Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304080314> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4304080314 endingPage "109983" @default.
- W4304080314 startingPage "109983" @default.
- W4304080314 abstract "With the increasing popularity of edge computing, service providers are more likely to deploy services at the edge of the network to reduce the latency of service requests. However, the resources offered by edge servers are extremely limited compared to those in the cloud. Therefore, a challenging issue in edge computing is how to sufficiently utilize service resources at the edge to satisfy as many service requests as possible. Existing service request scheduling methods mainly use a single optimization objective, e.g., resource utilization or running time. In this paper, the issue of service request scheduling with multiple requests is modeled as a sequential problem, where multiple optimization objectives, including resource utilization, running time, and waiting time, are involved. A reinforcement learning model with pointer networks is proposed to construct scheduling policies. Experiments conducted on three representative real-world datasets show that our proposed approach outperforms several state-of-the-art methods on the three metrics." @default.
- W4304080314 created "2022-10-10" @default.
- W4304080314 creator A5039259069 @default.
- W4304080314 creator A5046776336 @default.
- W4304080314 creator A5083581319 @default.
- W4304080314 creator A5086548631 @default.
- W4304080314 creator A5090628587 @default.
- W4304080314 date "2022-12-01" @default.
- W4304080314 modified "2023-10-14" @default.
- W4304080314 title "Integrating deep reinforcement learning with pointer networks for service request scheduling in edge computing" @default.
- W4304080314 cites W1991940402 @default.
- W4304080314 cites W2031604650 @default.
- W4304080314 cites W2036695884 @default.
- W4304080314 cites W2119717200 @default.
- W4304080314 cites W2594450422 @default.
- W4304080314 cites W2762456226 @default.
- W4304080314 cites W2900394813 @default.
- W4304080314 cites W2948349895 @default.
- W4304080314 cites W3016764502 @default.
- W4304080314 cites W3030070939 @default.
- W4304080314 cites W3059506646 @default.
- W4304080314 cites W3110825344 @default.
- W4304080314 cites W3115940603 @default.
- W4304080314 cites W3158882438 @default.
- W4304080314 cites W3186385855 @default.
- W4304080314 cites W3192536512 @default.
- W4304080314 cites W3194024219 @default.
- W4304080314 cites W3204809786 @default.
- W4304080314 cites W3209477841 @default.
- W4304080314 cites W3209727316 @default.
- W4304080314 cites W3214192060 @default.
- W4304080314 cites W3214976678 @default.
- W4304080314 cites W3217374538 @default.
- W4304080314 cites W4206294293 @default.
- W4304080314 cites W4210931006 @default.
- W4304080314 cites W4214829407 @default.
- W4304080314 cites W4214908208 @default.
- W4304080314 cites W4220918649 @default.
- W4304080314 cites W4250427605 @default.
- W4304080314 cites W4280571862 @default.
- W4304080314 doi "https://doi.org/10.1016/j.knosys.2022.109983" @default.
- W4304080314 hasPublicationYear "2022" @default.
- W4304080314 type Work @default.
- W4304080314 citedByCount "2" @default.
- W4304080314 countsByYear W43040803142023 @default.
- W4304080314 crossrefType "journal-article" @default.
- W4304080314 hasAuthorship W4304080314A5039259069 @default.
- W4304080314 hasAuthorship W4304080314A5046776336 @default.
- W4304080314 hasAuthorship W4304080314A5083581319 @default.
- W4304080314 hasAuthorship W4304080314A5086548631 @default.
- W4304080314 hasAuthorship W4304080314A5090628587 @default.
- W4304080314 hasConcept C111919701 @default.
- W4304080314 hasConcept C120314980 @default.
- W4304080314 hasConcept C126255220 @default.
- W4304080314 hasConcept C138236772 @default.
- W4304080314 hasConcept C150202949 @default.
- W4304080314 hasConcept C154945302 @default.
- W4304080314 hasConcept C162307627 @default.
- W4304080314 hasConcept C206729178 @default.
- W4304080314 hasConcept C2778456923 @default.
- W4304080314 hasConcept C33923547 @default.
- W4304080314 hasConcept C41008148 @default.
- W4304080314 hasConcept C79974875 @default.
- W4304080314 hasConcept C97541855 @default.
- W4304080314 hasConceptScore W4304080314C111919701 @default.
- W4304080314 hasConceptScore W4304080314C120314980 @default.
- W4304080314 hasConceptScore W4304080314C126255220 @default.
- W4304080314 hasConceptScore W4304080314C138236772 @default.
- W4304080314 hasConceptScore W4304080314C150202949 @default.
- W4304080314 hasConceptScore W4304080314C154945302 @default.
- W4304080314 hasConceptScore W4304080314C162307627 @default.
- W4304080314 hasConceptScore W4304080314C206729178 @default.
- W4304080314 hasConceptScore W4304080314C2778456923 @default.
- W4304080314 hasConceptScore W4304080314C33923547 @default.
- W4304080314 hasConceptScore W4304080314C41008148 @default.
- W4304080314 hasConceptScore W4304080314C79974875 @default.
- W4304080314 hasConceptScore W4304080314C97541855 @default.
- W4304080314 hasFunder F4320321001 @default.
- W4304080314 hasFunder F4320336589 @default.
- W4304080314 hasLocation W43040803141 @default.
- W4304080314 hasOpenAccess W4304080314 @default.
- W4304080314 hasPrimaryLocation W43040803141 @default.
- W4304080314 hasRelatedWork W2945616868 @default.
- W4304080314 hasRelatedWork W2971110943 @default.
- W4304080314 hasRelatedWork W2979596628 @default.
- W4304080314 hasRelatedWork W3021710439 @default.
- W4304080314 hasRelatedWork W3047608784 @default.
- W4304080314 hasRelatedWork W3088897221 @default.
- W4304080314 hasRelatedWork W4312815336 @default.
- W4304080314 hasRelatedWork W4376106090 @default.
- W4304080314 hasRelatedWork W4382052938 @default.
- W4304080314 hasRelatedWork W4386260457 @default.
- W4304080314 hasVolume "258" @default.
- W4304080314 isParatext "false" @default.
- W4304080314 isRetracted "false" @default.
- W4304080314 workType "article" @default.