Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304080345> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4304080345 endingPage "167546" @default.
- W4304080345 startingPage "167546" @default.
- W4304080345 abstract "In this work, we present a new approach for fast tracking on multiwire proportional chambers with neural networks. The tracking networks are developed and adapted for the first-level trigger at hadron collider experiments. We use Monte Carlo samples generated by Geant4 with a custom muon chamber, which resembles part of the thin gap chambers from the ATLAS experiment, for training and performance evaluations. The chamber has a total of seven gas gaps, where the first and last gas gaps are displaced by ∼1.5 m. Each gas gap has 50 channels with a size of 18–20 mm. Two neural network models are developed and presented: a convolutional neural network and a neural network optimized for the detector configuration of this study. In the latter network, a convolution layer is provided for each of three groups formed from 2–3 gas gaps of the chamber, and the outputs are fed into multilayer perceptrons in sequence. Both networks are transformed into hardware description language and implemented in Virtex UltraScale+ FPGA. The angular resolution is 2 mrad, which is comparable to the maximum resolution of the detector estimated by the minimum χ2 method. The latency achieved by the implemented firmware is less than 100 ns, and the throughput rate is 160 MHz." @default.
- W4304080345 created "2022-10-10" @default.
- W4304080345 creator A5024279285 @default.
- W4304080345 creator A5039227544 @default.
- W4304080345 creator A5043314685 @default.
- W4304080345 creator A5059833068 @default.
- W4304080345 creator A5090813417 @default.
- W4304080345 date "2023-01-01" @default.
- W4304080345 modified "2023-10-16" @default.
- W4304080345 title "Fast muon tracking with machine learning implemented in FPGA" @default.
- W4304080345 cites W1858542512 @default.
- W4304080345 cites W2120241137 @default.
- W4304080345 cites W2128158076 @default.
- W4304080345 cites W2160105560 @default.
- W4304080345 cites W2167727518 @default.
- W4304080345 cites W2566668505 @default.
- W4304080345 cites W2802756084 @default.
- W4304080345 cites W3004963134 @default.
- W4304080345 cites W3036085689 @default.
- W4304080345 cites W3101493857 @default.
- W4304080345 cites W3177366646 @default.
- W4304080345 cites W4283796538 @default.
- W4304080345 cites W4283803434 @default.
- W4304080345 doi "https://doi.org/10.1016/j.nima.2022.167546" @default.
- W4304080345 hasPublicationYear "2023" @default.
- W4304080345 type Work @default.
- W4304080345 citedByCount "3" @default.
- W4304080345 countsByYear W43040803452023 @default.
- W4304080345 crossrefType "journal-article" @default.
- W4304080345 hasAuthorship W4304080345A5024279285 @default.
- W4304080345 hasAuthorship W4304080345A5039227544 @default.
- W4304080345 hasAuthorship W4304080345A5043314685 @default.
- W4304080345 hasAuthorship W4304080345A5059833068 @default.
- W4304080345 hasAuthorship W4304080345A5090813417 @default.
- W4304080345 hasBestOaLocation W43040803452 @default.
- W4304080345 hasConcept C120665830 @default.
- W4304080345 hasConcept C121332964 @default.
- W4304080345 hasConcept C126093786 @default.
- W4304080345 hasConcept C154945302 @default.
- W4304080345 hasConcept C15744967 @default.
- W4304080345 hasConcept C19417346 @default.
- W4304080345 hasConcept C2775936607 @default.
- W4304080345 hasConcept C41008148 @default.
- W4304080345 hasConcept C42935608 @default.
- W4304080345 hasConcept C50644808 @default.
- W4304080345 hasConcept C60908668 @default.
- W4304080345 hasConcept C67212190 @default.
- W4304080345 hasConcept C81363708 @default.
- W4304080345 hasConcept C9390403 @default.
- W4304080345 hasConcept C94915269 @default.
- W4304080345 hasConceptScore W4304080345C120665830 @default.
- W4304080345 hasConceptScore W4304080345C121332964 @default.
- W4304080345 hasConceptScore W4304080345C126093786 @default.
- W4304080345 hasConceptScore W4304080345C154945302 @default.
- W4304080345 hasConceptScore W4304080345C15744967 @default.
- W4304080345 hasConceptScore W4304080345C19417346 @default.
- W4304080345 hasConceptScore W4304080345C2775936607 @default.
- W4304080345 hasConceptScore W4304080345C41008148 @default.
- W4304080345 hasConceptScore W4304080345C42935608 @default.
- W4304080345 hasConceptScore W4304080345C50644808 @default.
- W4304080345 hasConceptScore W4304080345C60908668 @default.
- W4304080345 hasConceptScore W4304080345C67212190 @default.
- W4304080345 hasConceptScore W4304080345C81363708 @default.
- W4304080345 hasConceptScore W4304080345C9390403 @default.
- W4304080345 hasConceptScore W4304080345C94915269 @default.
- W4304080345 hasFunder F4320334764 @default.
- W4304080345 hasLocation W43040803451 @default.
- W4304080345 hasLocation W43040803452 @default.
- W4304080345 hasOpenAccess W4304080345 @default.
- W4304080345 hasPrimaryLocation W43040803451 @default.
- W4304080345 hasRelatedWork W2066354466 @default.
- W4304080345 hasRelatedWork W2070793896 @default.
- W4304080345 hasRelatedWork W2475651717 @default.
- W4304080345 hasRelatedWork W2582981600 @default.
- W4304080345 hasRelatedWork W3010413952 @default.
- W4304080345 hasRelatedWork W4206124993 @default.
- W4304080345 hasRelatedWork W4225949190 @default.
- W4304080345 hasRelatedWork W4253989935 @default.
- W4304080345 hasRelatedWork W4287635472 @default.
- W4304080345 hasRelatedWork W4379115910 @default.
- W4304080345 hasVolume "1045" @default.
- W4304080345 isParatext "false" @default.
- W4304080345 isRetracted "false" @default.
- W4304080345 workType "article" @default.