Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304080786> ?p ?o ?g. }
- W4304080786 endingPage "6083" @default.
- W4304080786 startingPage "6069" @default.
- W4304080786 abstract "Over the last few decades, there has been a progressive transition from a categorical to a dimensional approach to psychiatric disorders. Especially in the case of substance use disorders, interest in the individual vulnerability to transition from controlled to compulsive drug taking warrants the development of novel dimension-based objective stratification tools. Here we drew on a multidimensional preclinical model of addiction, namely the 3-criteria model, previously developed to identify the neurobehavioural basis of the individual's vulnerability to switch from controlled to compulsive drug taking, to test a machine-learning assisted classifier objectively to identify individual subjects as vulnerable/resistant to addiction. Datasets from our previous studies on addiction-like behaviour for cocaine or alcohol were fed into a variety of machine-learning algorithms to develop a classifier that identifies resilient and vulnerable rats with high precision and reproducibility irrespective of the cohort to which they belong. A classifier based on K-median or K-mean-clustering (for cocaine or alcohol, respectively) followed by artificial neural networks emerged as a highly reliable and accurate tool to predict if a single rat is vulnerable/resilient to addiction. Thus, each rat previously characterized as displaying 0-criterion (i.e., resilient) or 3-criteria (i.e., vulnerable) in individual cohorts was correctly labelled by this classifier. The present machine-learning-based classifier objectively labels single individuals as resilient or vulnerable to developing addiction-like behaviour in a multisymptomatic preclinical model of addiction-like behaviour in rats. This novel dimension-based classifier increases the heuristic value of these preclinical models while providing proof of principle to deploy similar tools for the future of diagnosis of psychiatric disorders." @default.
- W4304080786 created "2022-10-10" @default.
- W4304080786 creator A5017404296 @default.
- W4304080786 creator A5017413763 @default.
- W4304080786 creator A5044645453 @default.
- W4304080786 creator A5071154443 @default.
- W4304080786 creator A5073288473 @default.
- W4304080786 date "2022-11-01" @default.
- W4304080786 modified "2023-10-14" @default.
- W4304080786 title "Towards a machine‐learning assisted diagnosis of psychiatric disorders and their operationalization in preclinical research: Evidence from studies on addiction‐like behaviour in individual rats" @default.
- W4304080786 cites W1644438397 @default.
- W4304080786 cites W1746214591 @default.
- W4304080786 cites W1965110331 @default.
- W4304080786 cites W1965464464 @default.
- W4304080786 cites W1981245258 @default.
- W4304080786 cites W1982298072 @default.
- W4304080786 cites W1983332126 @default.
- W4304080786 cites W1986911450 @default.
- W4304080786 cites W1988182239 @default.
- W4304080786 cites W1996987711 @default.
- W4304080786 cites W2010722865 @default.
- W4304080786 cites W2013262725 @default.
- W4304080786 cites W2016521885 @default.
- W4304080786 cites W2020521877 @default.
- W4304080786 cites W2024485135 @default.
- W4304080786 cites W2027040267 @default.
- W4304080786 cites W2029087047 @default.
- W4304080786 cites W2030133591 @default.
- W4304080786 cites W2037819798 @default.
- W4304080786 cites W2041015848 @default.
- W4304080786 cites W2043765696 @default.
- W4304080786 cites W2059297425 @default.
- W4304080786 cites W2061795745 @default.
- W4304080786 cites W2064785819 @default.
- W4304080786 cites W2072065003 @default.
- W4304080786 cites W2072292207 @default.
- W4304080786 cites W2072317904 @default.
- W4304080786 cites W2072386767 @default.
- W4304080786 cites W2079828968 @default.
- W4304080786 cites W2082893943 @default.
- W4304080786 cites W2086313373 @default.
- W4304080786 cites W2091042784 @default.
- W4304080786 cites W2105043569 @default.
- W4304080786 cites W2112323466 @default.
- W4304080786 cites W2118224832 @default.
- W4304080786 cites W2118540296 @default.
- W4304080786 cites W2137017963 @default.
- W4304080786 cites W2137453755 @default.
- W4304080786 cites W2146177007 @default.
- W4304080786 cites W2159950826 @default.
- W4304080786 cites W2160094698 @default.
- W4304080786 cites W2165125516 @default.
- W4304080786 cites W2207035985 @default.
- W4304080786 cites W2411340146 @default.
- W4304080786 cites W2416912299 @default.
- W4304080786 cites W2591102678 @default.
- W4304080786 cites W2746746984 @default.
- W4304080786 cites W2760601437 @default.
- W4304080786 cites W2765820768 @default.
- W4304080786 cites W2775173797 @default.
- W4304080786 cites W2809539758 @default.
- W4304080786 cites W2889413110 @default.
- W4304080786 cites W2903682160 @default.
- W4304080786 cites W2907276443 @default.
- W4304080786 cites W2914484970 @default.
- W4304080786 cites W2977087053 @default.
- W4304080786 cites W3013064929 @default.
- W4304080786 cites W3034488128 @default.
- W4304080786 cites W3103503451 @default.
- W4304080786 cites W3115390123 @default.
- W4304080786 cites W3121731700 @default.
- W4304080786 cites W3125535391 @default.
- W4304080786 cites W3157887727 @default.
- W4304080786 cites W3158264744 @default.
- W4304080786 cites W3206795340 @default.
- W4304080786 cites W4243827752 @default.
- W4304080786 cites W4297549634 @default.
- W4304080786 cites W4300672471 @default.
- W4304080786 cites W4304080786 @default.
- W4304080786 cites W43382659 @default.
- W4304080786 doi "https://doi.org/10.1111/ejn.15839" @default.
- W4304080786 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36215170" @default.
- W4304080786 hasPublicationYear "2022" @default.
- W4304080786 type Work @default.
- W4304080786 citedByCount "1" @default.
- W4304080786 countsByYear W43040807862022 @default.
- W4304080786 crossrefType "journal-article" @default.
- W4304080786 hasAuthorship W4304080786A5017404296 @default.
- W4304080786 hasAuthorship W4304080786A5017413763 @default.
- W4304080786 hasAuthorship W4304080786A5044645453 @default.
- W4304080786 hasAuthorship W4304080786A5071154443 @default.
- W4304080786 hasAuthorship W4304080786A5073288473 @default.
- W4304080786 hasBestOaLocation W43040807861 @default.
- W4304080786 hasConcept C111472728 @default.
- W4304080786 hasConcept C118552586 @default.
- W4304080786 hasConcept C119857082 @default.
- W4304080786 hasConcept C138885662 @default.
- W4304080786 hasConcept C154945302 @default.