Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304098324> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4304098324 endingPage "102787" @default.
- W4304098324 startingPage "102787" @default.
- W4304098324 abstract "Standard processing of electrophoretic data within a forensic DNA laboratory is for one (or two) analysts to designate peaks as either artefactual or non-artefactual in a process commonly referred to as profile 'reading'. Recently, FaSTR™ DNA has been developed to use artificial neural networks to automatically classify fluorescence within an electropherogram as baseline, allele, stutter or pull-up. These classifications are based on probabilities assigned to each timepoint (scan) within the electropherogram. Instead of using the probabilities to assign fluorescence into a category they can be used directly in the profile analysis. This has a number of advantages; increased objectivity in DNA profile processing, the removal for the need for analysts to read profiles, the removal for the need of an analytical threshold. Models within STRmix™ were extended to incorporate the peak label probabilities assigned by FaSTR™ DNA. The performance of the model extensions was tested on a DNA mixture dataset, comprising 2-4 person samples. This dataset was processed in a 'standard' manner using an analytical threshold of 50rfu, analyst peak designations and STRmix™ V2.9 models. The same dataset was then processed in an automated manner using no analytical threshold, no analysts reading the profile and using the STRmix™ models extended to incorporate peak label probabilities. Both datasets were compared to the known DNA donors and a set of non-donors. The result between the two processes was a very close performance, but with a large efficiency gain in the 0rfu process. Utilising peak label probabilities opens up the possibility for a range of workflow process efficiency gains, but beyond this allows full use of all data within an electropherogram." @default.
- W4304098324 created "2022-10-10" @default.
- W4304098324 creator A5015021900 @default.
- W4304098324 creator A5038210374 @default.
- W4304098324 date "2023-01-01" @default.
- W4304098324 modified "2023-09-24" @default.
- W4304098324 title "Combining artificial neural network classification with fully continuous probabilistic genotyping to remove the need for an analytical threshold and electropherogram reading" @default.
- W4304098324 cites W2017004428 @default.
- W4304098324 cites W2030369315 @default.
- W4304098324 cites W2031921316 @default.
- W4304098324 cites W2041756046 @default.
- W4304098324 cites W2150098756 @default.
- W4304098324 cites W2152275546 @default.
- W4304098324 cites W2156363616 @default.
- W4304098324 cites W2207696221 @default.
- W4304098324 cites W2506009718 @default.
- W4304098324 cites W2548069878 @default.
- W4304098324 cites W2594139593 @default.
- W4304098324 cites W2598602474 @default.
- W4304098324 cites W2731017582 @default.
- W4304098324 cites W2751783461 @default.
- W4304098324 cites W2888050155 @default.
- W4304098324 cites W2921005290 @default.
- W4304098324 cites W4212920736 @default.
- W4304098324 doi "https://doi.org/10.1016/j.fsigen.2022.102787" @default.
- W4304098324 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36270165" @default.
- W4304098324 hasPublicationYear "2023" @default.
- W4304098324 type Work @default.
- W4304098324 citedByCount "0" @default.
- W4304098324 crossrefType "journal-article" @default.
- W4304098324 hasAuthorship W4304098324A5015021900 @default.
- W4304098324 hasAuthorship W4304098324A5038210374 @default.
- W4304098324 hasConcept C119857082 @default.
- W4304098324 hasConcept C153180895 @default.
- W4304098324 hasConcept C154945302 @default.
- W4304098324 hasConcept C185592680 @default.
- W4304098324 hasConcept C2900643 @default.
- W4304098324 hasConcept C41008148 @default.
- W4304098324 hasConcept C43617362 @default.
- W4304098324 hasConcept C44995494 @default.
- W4304098324 hasConcept C49937458 @default.
- W4304098324 hasConcept C50644808 @default.
- W4304098324 hasConceptScore W4304098324C119857082 @default.
- W4304098324 hasConceptScore W4304098324C153180895 @default.
- W4304098324 hasConceptScore W4304098324C154945302 @default.
- W4304098324 hasConceptScore W4304098324C185592680 @default.
- W4304098324 hasConceptScore W4304098324C2900643 @default.
- W4304098324 hasConceptScore W4304098324C41008148 @default.
- W4304098324 hasConceptScore W4304098324C43617362 @default.
- W4304098324 hasConceptScore W4304098324C44995494 @default.
- W4304098324 hasConceptScore W4304098324C49937458 @default.
- W4304098324 hasConceptScore W4304098324C50644808 @default.
- W4304098324 hasFunder F4320337430 @default.
- W4304098324 hasLocation W43040983241 @default.
- W4304098324 hasLocation W43040983242 @default.
- W4304098324 hasOpenAccess W4304098324 @default.
- W4304098324 hasPrimaryLocation W43040983241 @default.
- W4304098324 hasRelatedWork W1575659177 @default.
- W4304098324 hasRelatedWork W2898927529 @default.
- W4304098324 hasRelatedWork W2961085424 @default.
- W4304098324 hasRelatedWork W3046775127 @default.
- W4304098324 hasRelatedWork W4286629047 @default.
- W4304098324 hasRelatedWork W4290792893 @default.
- W4304098324 hasRelatedWork W4306321456 @default.
- W4304098324 hasRelatedWork W4306674287 @default.
- W4304098324 hasRelatedWork W1629725936 @default.
- W4304098324 hasRelatedWork W4224009465 @default.
- W4304098324 hasVolume "62" @default.
- W4304098324 isParatext "false" @default.
- W4304098324 isRetracted "false" @default.
- W4304098324 workType "article" @default.