Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304112871> ?p ?o ?g. }
- W4304112871 endingPage "107425" @default.
- W4304112871 startingPage "107425" @default.
- W4304112871 abstract "Crop model–based irrigation scheduling is essential for improving crop production and water resource allocation. However, the parametrization of crop growth processes, for which relevant genetic coefficients must be determined through field scale experiments, is usually hampered by poor spatial representation; this limitation compromises the robustness of irrigation scheduling at the regional scale. We propose a framework for optimizing regional irrigation schedules; this framework involves using a distributed crop model with crop parameters determined through data assimilation. We first conducted a sensitivity analysis to identify the key genetic coefficients (P2: photoperiod sensitivity coefficient; P5: thermal time from silking to physiological maturity; G3: kernel filling rate during the linear grain filling stage and under optimal conditions) affecting the leaf area index (LAI) in the CERES-Maize model. Subsequently, the field-scale CERES-Maize model was calibrated and validated using data collected from field experiments conducted in 2016 and 2017, respectively. Subsequently, the LAI estimated from 2020 microwave backscattering data was used to assimilate remote sensing information and crop model in order to obtain the key genetic coefficients of maize in the distributed crop model. Finally, on the basis of the distributed crop model, a multiobjective genetic algorithm was executed to optimize irrigation schedules under various meteorological scenarios (e.g., precipitation and reference evapotranspiration). The LAI of maize at a regional scale was accurately estimated using backscattering information extracted from microwave remote sensing images (R2 = 0.94, RMSE = 0.27). Compared with the crop model parameters calibrated at the field scale, the crop model parameters determined through data assimilation resulted in more accurate simulations of LAI, soil water content, and yield at the regional scale. The irrigation schedule based on the distributed model increased the maize yield corresponding to the local current irrigation schedule by 125–851 kg/ha, increased the water use efficiency by 0.02–0.17 kg/m3, and reduced the irrigation amount by 2–60 mm. The proposed framework for estimating genetic coefficients based on data assimilation methods helps in regional irrigation scheduling for other crops." @default.
- W4304112871 created "2022-10-11" @default.
- W4304112871 creator A5014592284 @default.
- W4304112871 creator A5016285172 @default.
- W4304112871 creator A5045630835 @default.
- W4304112871 creator A5049353165 @default.
- W4304112871 creator A5080828738 @default.
- W4304112871 creator A5083878194 @default.
- W4304112871 date "2022-11-01" @default.
- W4304112871 modified "2023-09-23" @default.
- W4304112871 title "The distributed CERES-Maize model with crop parameters determined through data assimilation assists in regional irrigation schedule optimization" @default.
- W4304112871 cites W1125121475 @default.
- W4304112871 cites W1479398198 @default.
- W4304112871 cites W188948563 @default.
- W4304112871 cites W1963900093 @default.
- W4304112871 cites W1990244654 @default.
- W4304112871 cites W1999310382 @default.
- W4304112871 cites W2005193783 @default.
- W4304112871 cites W2010806274 @default.
- W4304112871 cites W2061632729 @default.
- W4304112871 cites W2126105956 @default.
- W4304112871 cites W2130762895 @default.
- W4304112871 cites W2132610536 @default.
- W4304112871 cites W2146582911 @default.
- W4304112871 cites W2155632266 @default.
- W4304112871 cites W2158883105 @default.
- W4304112871 cites W2161557312 @default.
- W4304112871 cites W2178894405 @default.
- W4304112871 cites W2346521225 @default.
- W4304112871 cites W2493695494 @default.
- W4304112871 cites W2522070492 @default.
- W4304112871 cites W2580643169 @default.
- W4304112871 cites W2600798029 @default.
- W4304112871 cites W2764230216 @default.
- W4304112871 cites W2778945516 @default.
- W4304112871 cites W2780690709 @default.
- W4304112871 cites W2810204294 @default.
- W4304112871 cites W2899178918 @default.
- W4304112871 cites W2900420505 @default.
- W4304112871 cites W2917226894 @default.
- W4304112871 cites W2919667016 @default.
- W4304112871 cites W2924984058 @default.
- W4304112871 cites W2931911031 @default.
- W4304112871 cites W2981110544 @default.
- W4304112871 cites W3009822902 @default.
- W4304112871 cites W3045742537 @default.
- W4304112871 cites W3085312098 @default.
- W4304112871 cites W3089974467 @default.
- W4304112871 cites W3093898974 @default.
- W4304112871 cites W3124650890 @default.
- W4304112871 cites W3130236439 @default.
- W4304112871 cites W3152372981 @default.
- W4304112871 cites W3189073022 @default.
- W4304112871 cites W3194274443 @default.
- W4304112871 cites W4241793634 @default.
- W4304112871 cites W4246068945 @default.
- W4304112871 cites W80143337 @default.
- W4304112871 doi "https://doi.org/10.1016/j.compag.2022.107425" @default.
- W4304112871 hasPublicationYear "2022" @default.
- W4304112871 type Work @default.
- W4304112871 citedByCount "0" @default.
- W4304112871 crossrefType "journal-article" @default.
- W4304112871 hasAuthorship W4304112871A5014592284 @default.
- W4304112871 hasAuthorship W4304112871A5016285172 @default.
- W4304112871 hasAuthorship W4304112871A5045630835 @default.
- W4304112871 hasAuthorship W4304112871A5049353165 @default.
- W4304112871 hasAuthorship W4304112871A5080828738 @default.
- W4304112871 hasAuthorship W4304112871A5083878194 @default.
- W4304112871 hasConcept C127413603 @default.
- W4304112871 hasConcept C153294291 @default.
- W4304112871 hasConcept C159390177 @default.
- W4304112871 hasConcept C159750122 @default.
- W4304112871 hasConcept C176783924 @default.
- W4304112871 hasConcept C18903297 @default.
- W4304112871 hasConcept C205649164 @default.
- W4304112871 hasConcept C24552861 @default.
- W4304112871 hasConcept C25989453 @default.
- W4304112871 hasConcept C2777589951 @default.
- W4304112871 hasConcept C33923547 @default.
- W4304112871 hasConcept C39432304 @default.
- W4304112871 hasConcept C62649853 @default.
- W4304112871 hasConcept C6557445 @default.
- W4304112871 hasConcept C72551326 @default.
- W4304112871 hasConcept C86803240 @default.
- W4304112871 hasConcept C88463610 @default.
- W4304112871 hasConcept C88862950 @default.
- W4304112871 hasConceptScore W4304112871C127413603 @default.
- W4304112871 hasConceptScore W4304112871C153294291 @default.
- W4304112871 hasConceptScore W4304112871C159390177 @default.
- W4304112871 hasConceptScore W4304112871C159750122 @default.
- W4304112871 hasConceptScore W4304112871C176783924 @default.
- W4304112871 hasConceptScore W4304112871C18903297 @default.
- W4304112871 hasConceptScore W4304112871C205649164 @default.
- W4304112871 hasConceptScore W4304112871C24552861 @default.
- W4304112871 hasConceptScore W4304112871C25989453 @default.
- W4304112871 hasConceptScore W4304112871C2777589951 @default.
- W4304112871 hasConceptScore W4304112871C33923547 @default.
- W4304112871 hasConceptScore W4304112871C39432304 @default.