Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304114230> ?p ?o ?g. }
- W4304114230 endingPage "673" @default.
- W4304114230 startingPage "658" @default.
- W4304114230 abstract "The Savonius Hydro-Kinetic Turbine (SHKT) has a frugal design with the possibility of easy local manufacturing. Therefore, SHKT is a suitable proposition for off-grid power generation in standalone mode across the remote and hilly locations. In this work, an optimized geometry of a semicircular SHKT was proposed through 3D CFD based simulations, artificial neural network (ANN) augmented optimization and experiments. Firstly, CFD investigations of SHKT were performed to identify the parameters affecting the power coefficient (Cp). Results of CFD simulations were used to train ANN which was further used to optimize the blade parameters. Finally, experiments were conducted on the optimized blade to validate its performance. The results showed that aspect ratio between 1.4 and 2.0 and overlap ratio between 0.15 and 0.2 indicate better performance. Blade arc angle of 166° produced a maximum Cp of 0.194 at a TSR of 0.8. The study concluded that ANN is a time saving yet accurate tool for optimization of turbine blades, and the results provide a good agreement with the computational results with difference of 1.57% only. The optimized blade is found to be 8% more efficient than semicircular blades and is recommended for its applications in hydro farms and turbine clusters." @default.
- W4304114230 created "2022-10-11" @default.
- W4304114230 creator A5006855940 @default.
- W4304114230 creator A5030351470 @default.
- W4304114230 date "2022-11-01" @default.
- W4304114230 modified "2023-09-27" @default.
- W4304114230 title "Optimization of semicircular blade profile of Savonius hydrokinetic turbine using artificial neural network" @default.
- W4304114230 cites W1169386274 @default.
- W4304114230 cites W1175502716 @default.
- W4304114230 cites W1848211986 @default.
- W4304114230 cites W1974262010 @default.
- W4304114230 cites W1979772055 @default.
- W4304114230 cites W1985666033 @default.
- W4304114230 cites W2000652754 @default.
- W4304114230 cites W2033765841 @default.
- W4304114230 cites W2034145748 @default.
- W4304114230 cites W2034957637 @default.
- W4304114230 cites W2041857354 @default.
- W4304114230 cites W2049387654 @default.
- W4304114230 cites W2054174465 @default.
- W4304114230 cites W2058229688 @default.
- W4304114230 cites W2059586406 @default.
- W4304114230 cites W2061224770 @default.
- W4304114230 cites W2063486083 @default.
- W4304114230 cites W2073745150 @default.
- W4304114230 cites W2077050331 @default.
- W4304114230 cites W2085449439 @default.
- W4304114230 cites W2087036092 @default.
- W4304114230 cites W2111497761 @default.
- W4304114230 cites W2116230514 @default.
- W4304114230 cites W2292874232 @default.
- W4304114230 cites W2550364052 @default.
- W4304114230 cites W2573496483 @default.
- W4304114230 cites W2622004872 @default.
- W4304114230 cites W2736274362 @default.
- W4304114230 cites W2754609739 @default.
- W4304114230 cites W2766230035 @default.
- W4304114230 cites W2787207349 @default.
- W4304114230 cites W2793682112 @default.
- W4304114230 cites W2883867434 @default.
- W4304114230 cites W2937303660 @default.
- W4304114230 cites W3001975036 @default.
- W4304114230 cites W3003282372 @default.
- W4304114230 cites W3009222452 @default.
- W4304114230 cites W3014066132 @default.
- W4304114230 cites W3048432737 @default.
- W4304114230 cites W3100274814 @default.
- W4304114230 cites W3155092557 @default.
- W4304114230 cites W3168461095 @default.
- W4304114230 cites W3185016360 @default.
- W4304114230 cites W3185191421 @default.
- W4304114230 cites W3198852098 @default.
- W4304114230 cites W3216359034 @default.
- W4304114230 cites W4210789729 @default.
- W4304114230 cites W4213294296 @default.
- W4304114230 cites W4220941437 @default.
- W4304114230 cites W4224075659 @default.
- W4304114230 cites W4225301776 @default.
- W4304114230 doi "https://doi.org/10.1016/j.renene.2022.10.021" @default.
- W4304114230 hasPublicationYear "2022" @default.
- W4304114230 type Work @default.
- W4304114230 citedByCount "5" @default.
- W4304114230 countsByYear W43041142302023 @default.
- W4304114230 crossrefType "journal-article" @default.
- W4304114230 hasAuthorship W4304114230A5006855940 @default.
- W4304114230 hasAuthorship W4304114230A5030351470 @default.
- W4304114230 hasConcept C127413603 @default.
- W4304114230 hasConcept C146978453 @default.
- W4304114230 hasConcept C154945302 @default.
- W4304114230 hasConcept C199104240 @default.
- W4304114230 hasConcept C2776132848 @default.
- W4304114230 hasConcept C2778449969 @default.
- W4304114230 hasConcept C41008148 @default.
- W4304114230 hasConcept C50644808 @default.
- W4304114230 hasConcept C78519656 @default.
- W4304114230 hasConceptScore W4304114230C127413603 @default.
- W4304114230 hasConceptScore W4304114230C146978453 @default.
- W4304114230 hasConceptScore W4304114230C154945302 @default.
- W4304114230 hasConceptScore W4304114230C199104240 @default.
- W4304114230 hasConceptScore W4304114230C2776132848 @default.
- W4304114230 hasConceptScore W4304114230C2778449969 @default.
- W4304114230 hasConceptScore W4304114230C41008148 @default.
- W4304114230 hasConceptScore W4304114230C50644808 @default.
- W4304114230 hasConceptScore W4304114230C78519656 @default.
- W4304114230 hasLocation W43041142301 @default.
- W4304114230 hasOpenAccess W4304114230 @default.
- W4304114230 hasPrimaryLocation W43041142301 @default.
- W4304114230 hasRelatedWork W2092512999 @default.
- W4304114230 hasRelatedWork W2172039056 @default.
- W4304114230 hasRelatedWork W2348166256 @default.
- W4304114230 hasRelatedWork W2361213489 @default.
- W4304114230 hasRelatedWork W2366083207 @default.
- W4304114230 hasRelatedWork W2381960470 @default.
- W4304114230 hasRelatedWork W2389875936 @default.
- W4304114230 hasRelatedWork W2393156887 @default.
- W4304114230 hasRelatedWork W4226352487 @default.
- W4304114230 hasRelatedWork W2903808990 @default.
- W4304114230 hasVolume "200" @default.