Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304128212> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4304128212 endingPage "75" @default.
- W4304128212 startingPage "71" @default.
- W4304128212 abstract "Social media plays an important role in connecting patients and plastic surgeons. We utilized patient inquiries regarding mastopexy from an online social media site to determine the most prevalent patient concerns, while employing a machine-learning algorithm to generate the questions representative of the dataset.This data allow plastic surgeons to better tailor their preoperative consultations to address common concerns, set realistic expectations, and improve overall satisfaction.A total of 2,011 inquiries from the mastopexy section of Realself.com were obtained using an open-source web crawler. Each inquiry was manually categorized as preoperative or postoperative and classified into subcategories based upon the free text entry. Lastly, questions were analyzed using machine learning to determine ten questions most representative of the inquiry pool.Of the 2,011 inquiries analyzed, 52.91% were preoperative and 47.09% were postoperative. Most preoperative questions asked about procedure eligibility (309, 29.04%), surgical techniques and logistics (260, 24.44%), and the best type of breast lift for the user (259, 24.34%). Among postoperative questions, questions regarding appearance were the most common (491, 51.85%), followed by symptoms after surgery (197, 19.75%) and behavior allowed/disallowed (145, 15.31%). Appearance was further subcategorized with the most common categories being appearance of the nipple (98, 19.86%), skin discoloration (88, 17.92%), and scarring (74, 15.07%).By utilizing the data that social media websites, like Realself.com, provide, plastic surgeons can better understand common patient concerns. This data aid in optimizing the preoperative consultation process to address the common concerns, recalibrate unrealistic expectations, and improve overall satisfaction." @default.
- W4304128212 created "2022-10-11" @default.
- W4304128212 creator A5027087377 @default.
- W4304128212 creator A5030383983 @default.
- W4304128212 creator A5056315709 @default.
- W4304128212 creator A5058027910 @default.
- W4304128212 creator A5066048742 @default.
- W4304128212 date "2023-01-01" @default.
- W4304128212 modified "2023-09-26" @default.
- W4304128212 title "A machine learning analysis of patient concerns regarding mastopexy" @default.
- W4304128212 cites W2052189418 @default.
- W4304128212 cites W2098083796 @default.
- W4304128212 cites W2146292423 @default.
- W4304128212 cites W2913202826 @default.
- W4304128212 cites W2915589238 @default.
- W4304128212 cites W2965858971 @default.
- W4304128212 cites W3009800132 @default.
- W4304128212 cites W3019782620 @default.
- W4304128212 cites W3032731257 @default.
- W4304128212 cites W4245942283 @default.
- W4304128212 doi "https://doi.org/10.1016/j.bjps.2022.10.007" @default.
- W4304128212 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36513013" @default.
- W4304128212 hasPublicationYear "2023" @default.
- W4304128212 type Work @default.
- W4304128212 citedByCount "0" @default.
- W4304128212 crossrefType "journal-article" @default.
- W4304128212 hasAuthorship W4304128212A5027087377 @default.
- W4304128212 hasAuthorship W4304128212A5030383983 @default.
- W4304128212 hasAuthorship W4304128212A5056315709 @default.
- W4304128212 hasAuthorship W4304128212A5058027910 @default.
- W4304128212 hasAuthorship W4304128212A5066048742 @default.
- W4304128212 hasConcept C124101348 @default.
- W4304128212 hasConcept C136764020 @default.
- W4304128212 hasConcept C137762411 @default.
- W4304128212 hasConcept C139002025 @default.
- W4304128212 hasConcept C141071460 @default.
- W4304128212 hasConcept C2776964564 @default.
- W4304128212 hasConcept C2780440149 @default.
- W4304128212 hasConcept C2781411149 @default.
- W4304128212 hasConcept C41008148 @default.
- W4304128212 hasConcept C518677369 @default.
- W4304128212 hasConcept C61434518 @default.
- W4304128212 hasConcept C71924100 @default.
- W4304128212 hasConceptScore W4304128212C124101348 @default.
- W4304128212 hasConceptScore W4304128212C136764020 @default.
- W4304128212 hasConceptScore W4304128212C137762411 @default.
- W4304128212 hasConceptScore W4304128212C139002025 @default.
- W4304128212 hasConceptScore W4304128212C141071460 @default.
- W4304128212 hasConceptScore W4304128212C2776964564 @default.
- W4304128212 hasConceptScore W4304128212C2780440149 @default.
- W4304128212 hasConceptScore W4304128212C2781411149 @default.
- W4304128212 hasConceptScore W4304128212C41008148 @default.
- W4304128212 hasConceptScore W4304128212C518677369 @default.
- W4304128212 hasConceptScore W4304128212C61434518 @default.
- W4304128212 hasConceptScore W4304128212C71924100 @default.
- W4304128212 hasLocation W43041282121 @default.
- W4304128212 hasLocation W43041282122 @default.
- W4304128212 hasOpenAccess W4304128212 @default.
- W4304128212 hasPrimaryLocation W43041282121 @default.
- W4304128212 hasRelatedWork W2008725951 @default.
- W4304128212 hasRelatedWork W2017781946 @default.
- W4304128212 hasRelatedWork W2035283235 @default.
- W4304128212 hasRelatedWork W2944624608 @default.
- W4304128212 hasRelatedWork W2959905481 @default.
- W4304128212 hasRelatedWork W3175830141 @default.
- W4304128212 hasRelatedWork W3207217221 @default.
- W4304128212 hasRelatedWork W4214922331 @default.
- W4304128212 hasRelatedWork W4376133736 @default.
- W4304128212 hasRelatedWork W2468107884 @default.
- W4304128212 hasVolume "76" @default.
- W4304128212 isParatext "false" @default.
- W4304128212 isRetracted "false" @default.
- W4304128212 workType "article" @default.