Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304166154> ?p ?o ?g. }
- W4304166154 endingPage "2668" @default.
- W4304166154 startingPage "2668" @default.
- W4304166154 abstract "Corn is a mass-produced agricultural product that plays a major role in the food chain and many agricultural products in addition to biofuels. Furthermore, households in poor countries may depend on small-scale corn cultivation for their basic needs. However, corn crops are vulnerable to diseases, which greatly affects farming yields. Moreover, extreme weather conditions and unseasonable temperatures can accelerate the spread of diseases. The pervasiveness and ubiquity of technology have allowed for the deployment of technological innovations in many areas. Particularly, applications powered by artificial intelligence algorithms have established themselves in many disciplines relating to image, signal, and sound recognition. In this work, we target the application of deep transfer learning in the classification of three corn diseases (i.e., Cercospora leaf spot, common rust, and northern leaf blight) in addition to the healthy plants. Using corn leaf image as input and convolutional neural networks models, no preprocessing or explicit feature extraction was required. Transfer learning using well-established and well-designed deep learning models was performed and extensively evaluated using multiple scenarios for splitting the data. In addition, the experiments were repeated 10 times to account for variability in picking random choices. The four classes were discerned with a mean accuracy of 98.6%. This and the other performance metrics exhibit values that make it feasible to build and deploy applications that can aid farmers and plant pathologists to promptly and accurately perform disease identification and apply the correct remedies." @default.
- W4304166154 created "2022-10-11" @default.
- W4304166154 creator A5042348594 @default.
- W4304166154 creator A5060526740 @default.
- W4304166154 creator A5075304419 @default.
- W4304166154 date "2022-10-11" @default.
- W4304166154 modified "2023-10-14" @default.
- W4304166154 title "Classification of Corn Diseases from Leaf Images Using Deep Transfer Learning" @default.
- W4304166154 cites W1980287119 @default.
- W4304166154 cites W2018105531 @default.
- W4304166154 cites W2040314511 @default.
- W4304166154 cites W2097117768 @default.
- W4304166154 cites W2103959917 @default.
- W4304166154 cites W2105885394 @default.
- W4304166154 cites W2108598243 @default.
- W4304166154 cites W2194775991 @default.
- W4304166154 cites W2208307739 @default.
- W4304166154 cites W2277854822 @default.
- W4304166154 cites W2395579298 @default.
- W4304166154 cites W2530572603 @default.
- W4304166154 cites W2531409750 @default.
- W4304166154 cites W2561267138 @default.
- W4304166154 cites W2807436399 @default.
- W4304166154 cites W2888728157 @default.
- W4304166154 cites W2902625477 @default.
- W4304166154 cites W2963125010 @default.
- W4304166154 cites W2963446712 @default.
- W4304166154 cites W3006941135 @default.
- W4304166154 cites W3042426234 @default.
- W4304166154 cites W3095722810 @default.
- W4304166154 cites W3100321043 @default.
- W4304166154 cites W3127787063 @default.
- W4304166154 cites W3136389514 @default.
- W4304166154 cites W3154383190 @default.
- W4304166154 cites W3198421214 @default.
- W4304166154 cites W4205356993 @default.
- W4304166154 cites W4210562074 @default.
- W4304166154 cites W4221124047 @default.
- W4304166154 cites W4224085183 @default.
- W4304166154 cites W4225270188 @default.
- W4304166154 cites W4226546757 @default.
- W4304166154 cites W4281697756 @default.
- W4304166154 cites W4281913362 @default.
- W4304166154 cites W4285255002 @default.
- W4304166154 doi "https://doi.org/10.3390/plants11202668" @default.
- W4304166154 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36297692" @default.
- W4304166154 hasPublicationYear "2022" @default.
- W4304166154 type Work @default.
- W4304166154 citedByCount "12" @default.
- W4304166154 countsByYear W43041661542023 @default.
- W4304166154 crossrefType "journal-article" @default.
- W4304166154 hasAuthorship W4304166154A5042348594 @default.
- W4304166154 hasAuthorship W4304166154A5060526740 @default.
- W4304166154 hasAuthorship W4304166154A5075304419 @default.
- W4304166154 hasBestOaLocation W43041661541 @default.
- W4304166154 hasConcept C108583219 @default.
- W4304166154 hasConcept C116834253 @default.
- W4304166154 hasConcept C118518473 @default.
- W4304166154 hasConcept C119857082 @default.
- W4304166154 hasConcept C120217122 @default.
- W4304166154 hasConcept C127413603 @default.
- W4304166154 hasConcept C150899416 @default.
- W4304166154 hasConcept C154945302 @default.
- W4304166154 hasConcept C18903297 @default.
- W4304166154 hasConcept C2776656883 @default.
- W4304166154 hasConcept C2780034373 @default.
- W4304166154 hasConcept C41008148 @default.
- W4304166154 hasConcept C59822182 @default.
- W4304166154 hasConcept C6557445 @default.
- W4304166154 hasConcept C81363708 @default.
- W4304166154 hasConcept C86803240 @default.
- W4304166154 hasConcept C88463610 @default.
- W4304166154 hasConceptScore W4304166154C108583219 @default.
- W4304166154 hasConceptScore W4304166154C116834253 @default.
- W4304166154 hasConceptScore W4304166154C118518473 @default.
- W4304166154 hasConceptScore W4304166154C119857082 @default.
- W4304166154 hasConceptScore W4304166154C120217122 @default.
- W4304166154 hasConceptScore W4304166154C127413603 @default.
- W4304166154 hasConceptScore W4304166154C150899416 @default.
- W4304166154 hasConceptScore W4304166154C154945302 @default.
- W4304166154 hasConceptScore W4304166154C18903297 @default.
- W4304166154 hasConceptScore W4304166154C2776656883 @default.
- W4304166154 hasConceptScore W4304166154C2780034373 @default.
- W4304166154 hasConceptScore W4304166154C41008148 @default.
- W4304166154 hasConceptScore W4304166154C59822182 @default.
- W4304166154 hasConceptScore W4304166154C6557445 @default.
- W4304166154 hasConceptScore W4304166154C81363708 @default.
- W4304166154 hasConceptScore W4304166154C86803240 @default.
- W4304166154 hasConceptScore W4304166154C88463610 @default.
- W4304166154 hasIssue "20" @default.
- W4304166154 hasLocation W43041661541 @default.
- W4304166154 hasLocation W43041661542 @default.
- W4304166154 hasLocation W43041661543 @default.
- W4304166154 hasLocation W43041661544 @default.
- W4304166154 hasOpenAccess W4304166154 @default.
- W4304166154 hasPrimaryLocation W43041661541 @default.
- W4304166154 hasRelatedWork W2996856019 @default.
- W4304166154 hasRelatedWork W3018421652 @default.