Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304172439> ?p ?o ?g. }
- W4304172439 abstract "PARP (poly ADP-ribose polymerase) family is a crucial DNA repair enzyme that responds to DNA damage, regulates apoptosis, and maintains genome stability; therefore, PARP inhibitors represent a promising therapeutic strategy for the treatment of various human diseases including COVID-19. In this study, a multi-task FP-GNN (Fingerprint and Graph Neural Networks) deep learning framework was proposed to predict the inhibitory activity of molecules against four PARP isoforms (PARP-1, PARP-2, PARP-5A, and PARP-5B). Compared with baseline predictive models based on four conventional machine learning methods such as RF, SVM, XGBoost, and LR as well as six deep learning algorithms such as DNN, Attentive FP, MPNN, GAT, GCN, and D-MPNN, the evaluation results indicate that the multi-task FP-GNN method achieves the best performance with the highest average BA, F1, and AUC values of 0.753 ± 0.033, 0.910 ± 0.045, and 0.888 ± 0.016 for the test set. In addition, Y-scrambling testing successfully verified that the model was not results of chance correlation. More importantly, the interpretability of the multi-task FP-GNN model enabled the identification of key structural fragments associated with the inhibition of each PARP isoform. To facilitate the use of the multi-task FP-GNN model in the field, an online webserver called PARPi-Predict and its local version software were created to predict whether compounds bear potential inhibitory activity against PARPs, thereby contributing to design and discover better selective PARP inhibitors." @default.
- W4304172439 created "2022-10-11" @default.
- W4304172439 creator A5023686923 @default.
- W4304172439 creator A5029390521 @default.
- W4304172439 creator A5048953421 @default.
- W4304172439 creator A5050487837 @default.
- W4304172439 creator A5050898115 @default.
- W4304172439 creator A5060649824 @default.
- W4304172439 creator A5061336382 @default.
- W4304172439 creator A5072166404 @default.
- W4304172439 creator A5090942254 @default.
- W4304172439 date "2022-10-11" @default.
- W4304172439 modified "2023-10-18" @default.
- W4304172439 title "A multi-task FP-GNN framework enables accurate prediction of selective PARP inhibitors" @default.
- W4304172439 cites W1570273246 @default.
- W4304172439 cites W1839388921 @default.
- W4304172439 cites W1969780150 @default.
- W4304172439 cites W1971122313 @default.
- W4304172439 cites W1971953001 @default.
- W4304172439 cites W1973268287 @default.
- W4304172439 cites W1977181499 @default.
- W4304172439 cites W1981976602 @default.
- W4304172439 cites W1988037271 @default.
- W4304172439 cites W1993180847 @default.
- W4304172439 cites W2014035904 @default.
- W4304172439 cites W2014484730 @default.
- W4304172439 cites W2040299042 @default.
- W4304172439 cites W2053124287 @default.
- W4304172439 cites W2060531713 @default.
- W4304172439 cites W2065585161 @default.
- W4304172439 cites W2068685580 @default.
- W4304172439 cites W2085459880 @default.
- W4304172439 cites W2096175781 @default.
- W4304172439 cites W2096864392 @default.
- W4304172439 cites W2116118256 @default.
- W4304172439 cites W2143929924 @default.
- W4304172439 cites W2153427108 @default.
- W4304172439 cites W2156442575 @default.
- W4304172439 cites W2200017991 @default.
- W4304172439 cites W2221103459 @default.
- W4304172439 cites W2227308339 @default.
- W4304172439 cites W2260345771 @default.
- W4304172439 cites W2319228377 @default.
- W4304172439 cites W2527762646 @default.
- W4304172439 cites W2531539980 @default.
- W4304172439 cites W2566202547 @default.
- W4304172439 cites W2594183968 @default.
- W4304172439 cites W2753962198 @default.
- W4304172439 cites W2900090807 @default.
- W4304172439 cites W2906986535 @default.
- W4304172439 cites W2911964244 @default.
- W4304172439 cites W2912501419 @default.
- W4304172439 cites W2914464817 @default.
- W4304172439 cites W2914969288 @default.
- W4304172439 cites W2921268473 @default.
- W4304172439 cites W2922360615 @default.
- W4304172439 cites W2927107056 @default.
- W4304172439 cites W2951058429 @default.
- W4304172439 cites W2966357564 @default.
- W4304172439 cites W2968734407 @default.
- W4304172439 cites W3004831765 @default.
- W4304172439 cites W3009341801 @default.
- W4304172439 cites W3017237254 @default.
- W4304172439 cites W3026749139 @default.
- W4304172439 cites W3036860998 @default.
- W4304172439 cites W3040809597 @default.
- W4304172439 cites W3097145107 @default.
- W4304172439 cites W3102476541 @default.
- W4304172439 cites W3125948939 @default.
- W4304172439 cites W3128300713 @default.
- W4304172439 cites W3152659217 @default.
- W4304172439 cites W3159592735 @default.
- W4304172439 cites W3205647825 @default.
- W4304172439 cites W3207395202 @default.
- W4304172439 cites W4226068197 @default.
- W4304172439 cites W4236280288 @default.
- W4304172439 cites W4239510810 @default.
- W4304172439 cites W4280602833 @default.
- W4304172439 cites W987011638 @default.
- W4304172439 doi "https://doi.org/10.3389/fphar.2022.971369" @default.
- W4304172439 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36304149" @default.
- W4304172439 hasPublicationYear "2022" @default.
- W4304172439 type Work @default.
- W4304172439 citedByCount "4" @default.
- W4304172439 countsByYear W43041724392022 @default.
- W4304172439 countsByYear W43041724392023 @default.
- W4304172439 crossrefType "journal-article" @default.
- W4304172439 hasAuthorship W4304172439A5023686923 @default.
- W4304172439 hasAuthorship W4304172439A5029390521 @default.
- W4304172439 hasAuthorship W4304172439A5048953421 @default.
- W4304172439 hasAuthorship W4304172439A5050487837 @default.
- W4304172439 hasAuthorship W4304172439A5050898115 @default.
- W4304172439 hasAuthorship W4304172439A5060649824 @default.
- W4304172439 hasAuthorship W4304172439A5061336382 @default.
- W4304172439 hasAuthorship W4304172439A5072166404 @default.
- W4304172439 hasAuthorship W4304172439A5090942254 @default.
- W4304172439 hasBestOaLocation W43041724391 @default.
- W4304172439 hasConcept C119857082 @default.
- W4304172439 hasConcept C154945302 @default.
- W4304172439 hasConcept C169903167 @default.