Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304172571> ?p ?o ?g. }
- W4304172571 endingPage "7675" @default.
- W4304172571 startingPage "7675" @default.
- W4304172571 abstract "Personalised healthcare has seen significant improvements due to the introduction of health monitoring technologies that allow wearable devices to unintrusively monitor physiological parameters such as heart health, blood pressure, sleep patterns, and blood glucose levels, among others. Additionally, utilising advanced sensing technologies based on flexible and innovative biocompatible materials in wearable devices allows high accuracy and precision measurement of biological signals. Furthermore, applying real-time Machine Learning algorithms to highly accurate physiological parameters allows precise identification of unusual patterns in the data to provide health event predictions and warnings for timely intervention. However, in the predominantly adopted architectures, health event predictions based on Machine Learning are typically obtained by leveraging Cloud infrastructures characterised by shortcomings such as delayed response times and privacy issues. Fortunately, recent works highlight that a new paradigm based on Edge Computing technologies and on-device Artificial Intelligence significantly improve the latency and privacy issues. Applying this new paradigm to personalised healthcare architectures can significantly improve their efficiency and efficacy. Therefore, this paper reviews existing IoT healthcare architectures that utilise wearable devices and subsequently presents a scalable and modular system architecture to leverage emerging technologies to solve identified shortcomings. The defined architecture includes ultrathin, skin-compatible, flexible, high precision piezoelectric sensors, low-cost communication technologies, on-device intelligence, Edge Intelligence, and Edge Computing technologies. To provide development guidelines and define a consistent reference architecture for improved scalable wearable IoT-based critical healthcare architectures, this manuscript outlines the essential functional and non-functional requirements based on deductions from existing architectures and emerging technology trends. The presented system architecture can be applied to many scenarios, including ambient assisted living, where continuous surveillance and issuance of timely warnings can afford independence to the elderly and chronically ill. We conclude that the distribution and modularity of architecture layers, local AI-based elaboration, and data packaging consistency are the more essential functional requirements for critical healthcare application use cases. We also identify fast response time, utility, comfort, and low cost as the essential non-functional requirements for the defined system architecture." @default.
- W4304172571 created "2022-10-11" @default.
- W4304172571 creator A5004787217 @default.
- W4304172571 creator A5007218240 @default.
- W4304172571 creator A5015936759 @default.
- W4304172571 creator A5033331100 @default.
- W4304172571 creator A5051033432 @default.
- W4304172571 creator A5076723887 @default.
- W4304172571 date "2022-10-10" @default.
- W4304172571 modified "2023-10-14" @default.
- W4304172571 title "Leveraging IoT-Aware Technologies and AI Techniques for Real-Time Critical Healthcare Applications" @default.
- W4304172571 cites W1669415040 @default.
- W4304172571 cites W1683889026 @default.
- W4304172571 cites W1809120057 @default.
- W4304172571 cites W2527516304 @default.
- W4304172571 cites W2578907517 @default.
- W4304172571 cites W2752051970 @default.
- W4304172571 cites W2774270830 @default.
- W4304172571 cites W2783804091 @default.
- W4304172571 cites W2793836002 @default.
- W4304172571 cites W2800094831 @default.
- W4304172571 cites W2904851131 @default.
- W4304172571 cites W2910541479 @default.
- W4304172571 cites W2916899507 @default.
- W4304172571 cites W2922310888 @default.
- W4304172571 cites W2945869729 @default.
- W4304172571 cites W2950865323 @default.
- W4304172571 cites W2952369053 @default.
- W4304172571 cites W2952957939 @default.
- W4304172571 cites W2962814013 @default.
- W4304172571 cites W2982241997 @default.
- W4304172571 cites W2983218553 @default.
- W4304172571 cites W3007212997 @default.
- W4304172571 cites W3007729836 @default.
- W4304172571 cites W3015589435 @default.
- W4304172571 cites W3020431485 @default.
- W4304172571 cites W3023935494 @default.
- W4304172571 cites W3033279319 @default.
- W4304172571 cites W3046901946 @default.
- W4304172571 cites W3084035729 @default.
- W4304172571 cites W3104616090 @default.
- W4304172571 cites W3118056579 @default.
- W4304172571 cites W3163797716 @default.
- W4304172571 cites W3169017409 @default.
- W4304172571 cites W3178238454 @default.
- W4304172571 cites W3182276148 @default.
- W4304172571 cites W3188917578 @default.
- W4304172571 cites W3190748826 @default.
- W4304172571 cites W3202905974 @default.
- W4304172571 cites W3215607949 @default.
- W4304172571 cites W3216221236 @default.
- W4304172571 cites W4200428464 @default.
- W4304172571 cites W4206046766 @default.
- W4304172571 cites W4206112559 @default.
- W4304172571 cites W4210568024 @default.
- W4304172571 cites W4210737864 @default.
- W4304172571 cites W4211249696 @default.
- W4304172571 cites W4213016839 @default.
- W4304172571 cites W4213095722 @default.
- W4304172571 cites W4220906329 @default.
- W4304172571 cites W4224242327 @default.
- W4304172571 cites W4229056261 @default.
- W4304172571 cites W4230197745 @default.
- W4304172571 cites W4292388557 @default.
- W4304172571 doi "https://doi.org/10.3390/s22197675" @default.
- W4304172571 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36236773" @default.
- W4304172571 hasPublicationYear "2022" @default.
- W4304172571 type Work @default.
- W4304172571 citedByCount "10" @default.
- W4304172571 countsByYear W43041725712022 @default.
- W4304172571 countsByYear W43041725712023 @default.
- W4304172571 crossrefType "journal-article" @default.
- W4304172571 hasAuthorship W4304172571A5004787217 @default.
- W4304172571 hasAuthorship W4304172571A5007218240 @default.
- W4304172571 hasAuthorship W4304172571A5015936759 @default.
- W4304172571 hasAuthorship W4304172571A5033331100 @default.
- W4304172571 hasAuthorship W4304172571A5051033432 @default.
- W4304172571 hasAuthorship W4304172571A5076723887 @default.
- W4304172571 hasBestOaLocation W43041725711 @default.
- W4304172571 hasConcept C101468663 @default.
- W4304172571 hasConcept C111919701 @default.
- W4304172571 hasConcept C149635348 @default.
- W4304172571 hasConcept C150594956 @default.
- W4304172571 hasConcept C153083717 @default.
- W4304172571 hasConcept C154945302 @default.
- W4304172571 hasConcept C160735492 @default.
- W4304172571 hasConcept C162307627 @default.
- W4304172571 hasConcept C162324750 @default.
- W4304172571 hasConcept C2522767166 @default.
- W4304172571 hasConcept C2778456923 @default.
- W4304172571 hasConcept C41008148 @default.
- W4304172571 hasConcept C48044578 @default.
- W4304172571 hasConcept C50522688 @default.
- W4304172571 hasConcept C54290928 @default.
- W4304172571 hasConcept C77088390 @default.
- W4304172571 hasConcept C79974875 @default.
- W4304172571 hasConceptScore W4304172571C101468663 @default.
- W4304172571 hasConceptScore W4304172571C111919701 @default.