Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304183723> ?p ?o ?g. }
- W4304183723 abstract "SARS-CoV-2 triggered a worldwide medical crisis, affecting the world's social, emotional, physical, and economic equilibrium. However, treatment choices and targets for finding a solution to COVID-19's threat are becoming limited. A viable approach to combating the threat of COVID-19 is by unraveling newer pharmacological and therapeutic targets pertinent in the viral survival and adaptive mechanisms within the host biological milieu which in turn provides the opportunity to discover promising inhibitors against COVID-19. Therefore, using high-throughput virtual screening, manually curated compounds library from some medicinal plants were screened against four main drivers of SARS-CoV-2 (spike glycoprotein, PLpro, 3CLpro, and RdRp). In addition, molecular docking, Prime MM/GBSA (molecular mechanics/generalized Born surface area) analysis, molecular dynamics (MD) simulation, and drug-likeness screening were performed to identify potential phytodrugs candidates for COVID-19 treatment. In support of these approaches, we used a series of computational modeling approaches to develop therapeutic agents against COVID-19. Out of the screened compounds against the selected SARS-CoV-2 therapeutic targets, only compounds with no violations of Lipinski's rule of five and high binding affinity were considered as potential anti-COVID-19 drugs. However, lonchocarpol A, diplacol, and broussonol E (lead compounds) were recorded as the best compounds that satisfied this requirement, and they demonstrated their highest binding affinity against 3CLpro. Therefore, the 3CLpro target and the three lead compounds were selected for further analysis. Through protein-ligand mapping and interaction profiling, the three lead compounds formed essential interactions such as hydrogen bonds and hydrophobic interactions with amino acid residues at the binding pocket of 3CLpro. The key amino acid residues at the 3CLpro active site participating in the hydrophobic and polar inter/intra molecular interaction were TYR54, PRO52, CYS44, MET49, MET165, CYS145, HIS41, THR26, THR25, GLN189, and THR190. The compounds demonstrated stable protein-ligand complexes in the active site of the target (3CLpro) over a 100 ns simulation period with stable protein-ligand trajectories. Drug-likeness screening shows that the compounds are druggable molecules, and the toxicity descriptors established that the compounds demonstrated a good biosafety profile. Furthermore, the compounds were chemically reactive with promising molecular electron potential properties. Collectively, we propose that the discovered lead compounds may open the way for establishing phytodrugs to manage COVID-19 pandemics and new chemical libraries to prevent COVID-19 entry into the host based on the findings of this computational investigation." @default.
- W4304183723 created "2022-10-11" @default.
- W4304183723 creator A5000223805 @default.
- W4304183723 creator A5000698544 @default.
- W4304183723 creator A5004251123 @default.
- W4304183723 creator A5004901619 @default.
- W4304183723 creator A5006404029 @default.
- W4304183723 creator A5007691988 @default.
- W4304183723 creator A5008918412 @default.
- W4304183723 creator A5009236798 @default.
- W4304183723 creator A5009948217 @default.
- W4304183723 creator A5019796512 @default.
- W4304183723 creator A5019828189 @default.
- W4304183723 creator A5023465375 @default.
- W4304183723 creator A5030291969 @default.
- W4304183723 creator A5037379951 @default.
- W4304183723 creator A5056106219 @default.
- W4304183723 creator A5061853767 @default.
- W4304183723 creator A5062376583 @default.
- W4304183723 creator A5069930181 @default.
- W4304183723 creator A5075428435 @default.
- W4304183723 creator A5079075082 @default.
- W4304183723 creator A5083236918 @default.
- W4304183723 creator A5084824338 @default.
- W4304183723 creator A5090404958 @default.
- W4304183723 date "2022-10-11" @default.
- W4304183723 modified "2023-10-14" @default.
- W4304183723 title "Discovery of putative inhibitors against main drivers of SARS-CoV-2 infection: Insight from quantum mechanical evaluation and molecular modeling" @default.
- W4304183723 cites W1966238900 @default.
- W4304183723 cites W1973582972 @default.
- W4304183723 cites W1985588649 @default.
- W4304183723 cites W1990147235 @default.
- W4304183723 cites W1993238504 @default.
- W4304183723 cites W1993577573 @default.
- W4304183723 cites W1994915168 @default.
- W4304183723 cites W2011805684 @default.
- W4304183723 cites W2014858249 @default.
- W4304183723 cites W2017248106 @default.
- W4304183723 cites W2028046413 @default.
- W4304183723 cites W2030922853 @default.
- W4304183723 cites W2031168104 @default.
- W4304183723 cites W2043737771 @default.
- W4304183723 cites W2044278684 @default.
- W4304183723 cites W2045393117 @default.
- W4304183723 cites W2047321776 @default.
- W4304183723 cites W2051237429 @default.
- W4304183723 cites W2055563809 @default.
- W4304183723 cites W2055903690 @default.
- W4304183723 cites W2061777515 @default.
- W4304183723 cites W2066694751 @default.
- W4304183723 cites W2067174909 @default.
- W4304183723 cites W2073294374 @default.
- W4304183723 cites W2074682587 @default.
- W4304183723 cites W2078194332 @default.
- W4304183723 cites W2078510009 @default.
- W4304183723 cites W2081693079 @default.
- W4304183723 cites W2095719702 @default.
- W4304183723 cites W2112898697 @default.
- W4304183723 cites W2135732933 @default.
- W4304183723 cites W2139603860 @default.
- W4304183723 cites W2147085530 @default.
- W4304183723 cites W2149865974 @default.
- W4304183723 cites W2157483439 @default.
- W4304183723 cites W2171353131 @default.
- W4304183723 cites W2255243349 @default.
- W4304183723 cites W2284201926 @default.
- W4304183723 cites W2327974216 @default.
- W4304183723 cites W2345471773 @default.
- W4304183723 cites W2593436234 @default.
- W4304183723 cites W2601969430 @default.
- W4304183723 cites W2616534491 @default.
- W4304183723 cites W2901861218 @default.
- W4304183723 cites W2920103168 @default.
- W4304183723 cites W2947817007 @default.
- W4304183723 cites W2979835073 @default.
- W4304183723 cites W3001456238 @default.
- W4304183723 cites W3002539152 @default.
- W4304183723 cites W3008779998 @default.
- W4304183723 cites W3012040732 @default.
- W4304183723 cites W3012440244 @default.
- W4304183723 cites W3013467637 @default.
- W4304183723 cites W3016667990 @default.
- W4304183723 cites W3036699232 @default.
- W4304183723 cites W3048390006 @default.
- W4304183723 cites W3090792119 @default.
- W4304183723 cites W3155382866 @default.
- W4304183723 cites W3201423998 @default.
- W4304183723 cites W3207281690 @default.
- W4304183723 cites W4235804341 @default.
- W4304183723 cites W4248107770 @default.
- W4304183723 doi "https://doi.org/10.3389/fchem.2022.964446" @default.
- W4304183723 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36304744" @default.
- W4304183723 hasPublicationYear "2022" @default.
- W4304183723 type Work @default.
- W4304183723 citedByCount "3" @default.
- W4304183723 countsByYear W43041837232023 @default.
- W4304183723 crossrefType "journal-article" @default.
- W4304183723 hasAuthorship W4304183723A5000223805 @default.
- W4304183723 hasAuthorship W4304183723A5000698544 @default.
- W4304183723 hasAuthorship W4304183723A5004251123 @default.