Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304184517> ?p ?o ?g. }
- W4304184517 endingPage "7556" @default.
- W4304184517 startingPage "7548" @default.
- W4304184517 abstract "Machine learning predictions of molecular thermochemistry, such as formation enthalpy, have been limited for large and complicated species because of the lack of available training data. Such predictions would be important in the prediction of reaction thermodynamics and the construction of kinetic models. Herein, we introduce a graph-based deep learning approach that can separately learn the enthalpy contribution of each atom in its local environment with the effect of the overall molecular structure taken into account. Because this approach follows the additivity scheme of increment theory, it can be generalized to larger and more complicated species not present in the training data. By training the model on molecules with up to 11 heavy atoms, it can predict the formation enthalpy of testing molecules with up to 42 heavy atoms with a mean absolute error of 2 kcal/mol, which is less than half of the error of the conventional increment theory. We expect that this approach will also enable rapid prediction of other extensive properties of large molecules that are difficult to derive from experiments or ab initio calculation." @default.
- W4304184517 created "2022-10-11" @default.
- W4304184517 creator A5003414479 @default.
- W4304184517 creator A5064607675 @default.
- W4304184517 creator A5084435412 @default.
- W4304184517 creator A5086345816 @default.
- W4304184517 date "2022-10-11" @default.
- W4304184517 modified "2023-10-14" @default.
- W4304184517 title "Deep Learning-Based Increment Theory for Formation Enthalpy Predictions" @default.
- W4304184517 cites W1965354561 @default.
- W4304184517 cites W1975997599 @default.
- W4304184517 cites W1976127374 @default.
- W4304184517 cites W1979275139 @default.
- W4304184517 cites W1979612778 @default.
- W4304184517 cites W1994917514 @default.
- W4304184517 cites W2001781331 @default.
- W4304184517 cites W2025444507 @default.
- W4304184517 cites W2028054907 @default.
- W4304184517 cites W2029413789 @default.
- W4304184517 cites W2033319200 @default.
- W4304184517 cites W2056139823 @default.
- W4304184517 cites W2075711588 @default.
- W4304184517 cites W2079346192 @default.
- W4304184517 cites W2080635178 @default.
- W4304184517 cites W2099190231 @default.
- W4304184517 cites W2104489082 @default.
- W4304184517 cites W2104631894 @default.
- W4304184517 cites W2277091242 @default.
- W4304184517 cites W2290847742 @default.
- W4304184517 cites W2333242253 @default.
- W4304184517 cites W2395330180 @default.
- W4304184517 cites W2461462782 @default.
- W4304184517 cites W2527189750 @default.
- W4304184517 cites W2541404351 @default.
- W4304184517 cites W2542768043 @default.
- W4304184517 cites W2547447472 @default.
- W4304184517 cites W2768638516 @default.
- W4304184517 cites W2776192919 @default.
- W4304184517 cites W2778051509 @default.
- W4304184517 cites W2785813126 @default.
- W4304184517 cites W2789074794 @default.
- W4304184517 cites W2793162625 @default.
- W4304184517 cites W2885743751 @default.
- W4304184517 cites W2886811945 @default.
- W4304184517 cites W2913529346 @default.
- W4304184517 cites W2951642668 @default.
- W4304184517 cites W2954088480 @default.
- W4304184517 cites W2966357564 @default.
- W4304184517 cites W3012231169 @default.
- W4304184517 cites W3034390843 @default.
- W4304184517 cites W3041419076 @default.
- W4304184517 cites W3100859786 @default.
- W4304184517 cites W3101744125 @default.
- W4304184517 cites W3104541550 @default.
- W4304184517 cites W3165308978 @default.
- W4304184517 cites W3165444678 @default.
- W4304184517 cites W3174677382 @default.
- W4304184517 cites W4213077304 @default.
- W4304184517 cites W4223507106 @default.
- W4304184517 doi "https://doi.org/10.1021/acs.jpca.2c04848" @default.
- W4304184517 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36217924" @default.
- W4304184517 hasPublicationYear "2022" @default.
- W4304184517 type Work @default.
- W4304184517 citedByCount "5" @default.
- W4304184517 countsByYear W43041845172023 @default.
- W4304184517 crossrefType "journal-article" @default.
- W4304184517 hasAuthorship W4304184517A5003414479 @default.
- W4304184517 hasAuthorship W4304184517A5064607675 @default.
- W4304184517 hasAuthorship W4304184517A5084435412 @default.
- W4304184517 hasAuthorship W4304184517A5086345816 @default.
- W4304184517 hasConcept C121332964 @default.
- W4304184517 hasConcept C121864883 @default.
- W4304184517 hasConcept C134306372 @default.
- W4304184517 hasConcept C147368240 @default.
- W4304184517 hasConcept C147597530 @default.
- W4304184517 hasConcept C147789679 @default.
- W4304184517 hasConcept C149635348 @default.
- W4304184517 hasConcept C178790620 @default.
- W4304184517 hasConcept C185592680 @default.
- W4304184517 hasConcept C2781442258 @default.
- W4304184517 hasConcept C29563950 @default.
- W4304184517 hasConcept C3288061 @default.
- W4304184517 hasConcept C32909587 @default.
- W4304184517 hasConcept C33923547 @default.
- W4304184517 hasConcept C38803922 @default.
- W4304184517 hasConcept C41008148 @default.
- W4304184517 hasConcept C58312451 @default.
- W4304184517 hasConcept C59801894 @default.
- W4304184517 hasConcept C97355855 @default.
- W4304184517 hasConceptScore W4304184517C121332964 @default.
- W4304184517 hasConceptScore W4304184517C121864883 @default.
- W4304184517 hasConceptScore W4304184517C134306372 @default.
- W4304184517 hasConceptScore W4304184517C147368240 @default.
- W4304184517 hasConceptScore W4304184517C147597530 @default.
- W4304184517 hasConceptScore W4304184517C147789679 @default.
- W4304184517 hasConceptScore W4304184517C149635348 @default.
- W4304184517 hasConceptScore W4304184517C178790620 @default.
- W4304184517 hasConceptScore W4304184517C185592680 @default.