Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304184928> ?p ?o ?g. }
- W4304184928 endingPage "1691" @default.
- W4304184928 startingPage "1691" @default.
- W4304184928 abstract "According to the Korea Institute for Health and Social Affairs, in 2017, the elderly, aged 65 or older, had an average of 2.7 chronic diseases per person. The concern for the medical welfare of the elderly is increasing due to a low birth rate, an aging population, and the lack of medical personnel. The demand for services that take user age, cognitive capacity, and difficulty into account is rising. As a result, there is an increased demand for smart healthcare systems that can lower hospital admissions and offer patients individualized care. This has motivated us to develop an AI system that can easily screen and manage neurological diseases through videos. As neurological diseases can be diagnosed by visual analysis to some extent, in this study, we set out to estimate the possibility of a person having a neurological disease from videos. Among neurological diseases, we focus on stroke because it is a common condition in the elderly population and results in high mortality and morbidity worldwide. The proposed method consists of three steps: (1) transforming neurological examination videos into landmark data, (2) converting the landmark data into recurrence plots, and (3) estimating the possibility of a stroke using deep neural networks. Major features, such as the hand, face, pupil, and body movements of a person are extracted from test videos taken under several neurological examination protocols using deep-learning-based landmark extractors. Sequences of these landmark data are then converted into recurrence plots, which can be interpreted as images. These images can be fed into convolutional neural networks to classify stroke using feature-fusion techniques. A case study of the application of a disease screening test to assess the capability of the proposed method is presented." @default.
- W4304184928 created "2022-10-11" @default.
- W4304184928 creator A5033681555 @default.
- W4304184928 creator A5046380769 @default.
- W4304184928 creator A5078483539 @default.
- W4304184928 creator A5081143832 @default.
- W4304184928 date "2022-10-11" @default.
- W4304184928 modified "2023-09-26" @default.
- W4304184928 title "Deep-Learning-Based Stroke Screening Using Skeleton Data from Neurological Examination Videos" @default.
- W4304184928 cites W1703506123 @default.
- W4304184928 cites W2008649809 @default.
- W4304184928 cites W2012885984 @default.
- W4304184928 cites W2102447759 @default.
- W4304184928 cites W2108598243 @default.
- W4304184928 cites W2108790161 @default.
- W4304184928 cites W2117826647 @default.
- W4304184928 cites W2125476067 @default.
- W4304184928 cites W2141842749 @default.
- W4304184928 cites W2157420555 @default.
- W4304184928 cites W2159233098 @default.
- W4304184928 cites W2167541413 @default.
- W4304184928 cites W2171165037 @default.
- W4304184928 cites W2513420276 @default.
- W4304184928 cites W2618530766 @default.
- W4304184928 cites W2766507190 @default.
- W4304184928 cites W2788675884 @default.
- W4304184928 cites W2800452457 @default.
- W4304184928 cites W2803306216 @default.
- W4304184928 cites W2916323829 @default.
- W4304184928 cites W2940487144 @default.
- W4304184928 cites W2964267916 @default.
- W4304184928 cites W3004022591 @default.
- W4304184928 cites W3010687358 @default.
- W4304184928 cites W3039545596 @default.
- W4304184928 cites W3044430020 @default.
- W4304184928 cites W3123208053 @default.
- W4304184928 cites W3157419554 @default.
- W4304184928 cites W4255683973 @default.
- W4304184928 cites W4293084779 @default.
- W4304184928 cites W961098086 @default.
- W4304184928 doi "https://doi.org/10.3390/jpm12101691" @default.
- W4304184928 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36294830" @default.
- W4304184928 hasPublicationYear "2022" @default.
- W4304184928 type Work @default.
- W4304184928 citedByCount "0" @default.
- W4304184928 crossrefType "journal-article" @default.
- W4304184928 hasAuthorship W4304184928A5033681555 @default.
- W4304184928 hasAuthorship W4304184928A5046380769 @default.
- W4304184928 hasAuthorship W4304184928A5078483539 @default.
- W4304184928 hasAuthorship W4304184928A5081143832 @default.
- W4304184928 hasBestOaLocation W43041849281 @default.
- W4304184928 hasConcept C108583219 @default.
- W4304184928 hasConcept C127413603 @default.
- W4304184928 hasConcept C13774568 @default.
- W4304184928 hasConcept C141071460 @default.
- W4304184928 hasConcept C151730666 @default.
- W4304184928 hasConcept C154945302 @default.
- W4304184928 hasConcept C160735492 @default.
- W4304184928 hasConcept C162324750 @default.
- W4304184928 hasConcept C2777267654 @default.
- W4304184928 hasConcept C2780168130 @default.
- W4304184928 hasConcept C2780297707 @default.
- W4304184928 hasConcept C2780645631 @default.
- W4304184928 hasConcept C2908647359 @default.
- W4304184928 hasConcept C41008148 @default.
- W4304184928 hasConcept C50522688 @default.
- W4304184928 hasConcept C71924100 @default.
- W4304184928 hasConcept C78519656 @default.
- W4304184928 hasConcept C86803240 @default.
- W4304184928 hasConcept C99454951 @default.
- W4304184928 hasConcept C99508421 @default.
- W4304184928 hasConceptScore W4304184928C108583219 @default.
- W4304184928 hasConceptScore W4304184928C127413603 @default.
- W4304184928 hasConceptScore W4304184928C13774568 @default.
- W4304184928 hasConceptScore W4304184928C141071460 @default.
- W4304184928 hasConceptScore W4304184928C151730666 @default.
- W4304184928 hasConceptScore W4304184928C154945302 @default.
- W4304184928 hasConceptScore W4304184928C160735492 @default.
- W4304184928 hasConceptScore W4304184928C162324750 @default.
- W4304184928 hasConceptScore W4304184928C2777267654 @default.
- W4304184928 hasConceptScore W4304184928C2780168130 @default.
- W4304184928 hasConceptScore W4304184928C2780297707 @default.
- W4304184928 hasConceptScore W4304184928C2780645631 @default.
- W4304184928 hasConceptScore W4304184928C2908647359 @default.
- W4304184928 hasConceptScore W4304184928C41008148 @default.
- W4304184928 hasConceptScore W4304184928C50522688 @default.
- W4304184928 hasConceptScore W4304184928C71924100 @default.
- W4304184928 hasConceptScore W4304184928C78519656 @default.
- W4304184928 hasConceptScore W4304184928C86803240 @default.
- W4304184928 hasConceptScore W4304184928C99454951 @default.
- W4304184928 hasConceptScore W4304184928C99508421 @default.
- W4304184928 hasIssue "10" @default.
- W4304184928 hasLocation W43041849281 @default.
- W4304184928 hasLocation W43041849282 @default.
- W4304184928 hasLocation W43041849283 @default.
- W4304184928 hasOpenAccess W4304184928 @default.
- W4304184928 hasPrimaryLocation W43041849281 @default.
- W4304184928 hasRelatedWork W1990932233 @default.