Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304190229> ?p ?o ?g. }
- W4304190229 endingPage "674" @default.
- W4304190229 startingPage "648" @default.
- W4304190229 abstract "Abstract Finite Gaussian mixture models provide a powerful and widely employed probabilistic approach for clustering multivariate continuous data. However, the practical usefulness of these models is jeopardized in high-dimensional spaces, where they tend to be over-parameterized. As a consequence, different solutions have been proposed, often relying on matrix decompositions or variable selection strategies. Recently, a methodological link between Gaussian graphical models and finite mixtures has been established, paving the way for penalized model-based clustering in the presence of large precision matrices. Notwithstanding, current methodologies implicitly assume similar levels of sparsity across the classes, not accounting for different degrees of association between the variables across groups. We overcome this limitation by deriving group-wise penalty factors, which automatically enforce under or over-connectivity in the estimated graphs. The approach is entirely data-driven and does not require additional hyper-parameter specification. Analyses on synthetic and real data showcase the validity of our proposal." @default.
- W4304190229 created "2022-10-11" @default.
- W4304190229 creator A5004888236 @default.
- W4304190229 creator A5026605306 @default.
- W4304190229 creator A5078007621 @default.
- W4304190229 date "2022-10-11" @default.
- W4304190229 modified "2023-09-30" @default.
- W4304190229 title "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering" @default.
- W4304190229 cites W1482639564 @default.
- W4304190229 cites W1523985187 @default.
- W4304190229 cites W1556261580 @default.
- W4304190229 cites W1858253732 @default.
- W4304190229 cites W1975120776 @default.
- W4304190229 cites W1978051418 @default.
- W4304190229 cites W1987368804 @default.
- W4304190229 cites W1993746015 @default.
- W4304190229 cites W1995436190 @default.
- W4304190229 cites W1995691260 @default.
- W4304190229 cites W2010467272 @default.
- W4304190229 cites W2011832962 @default.
- W4304190229 cites W2012084096 @default.
- W4304190229 cites W2020925091 @default.
- W4304190229 cites W2021137021 @default.
- W4304190229 cites W2039615557 @default.
- W4304190229 cites W2044186721 @default.
- W4304190229 cites W2047109555 @default.
- W4304190229 cites W2056243712 @default.
- W4304190229 cites W2074360197 @default.
- W4304190229 cites W2076146315 @default.
- W4304190229 cites W2082503527 @default.
- W4304190229 cites W2085808540 @default.
- W4304190229 cites W2095373758 @default.
- W4304190229 cites W2112759033 @default.
- W4304190229 cites W2132555912 @default.
- W4304190229 cites W2144664383 @default.
- W4304190229 cites W2150149003 @default.
- W4304190229 cites W2152904625 @default.
- W4304190229 cites W2158721310 @default.
- W4304190229 cites W2163707651 @default.
- W4304190229 cites W2165009258 @default.
- W4304190229 cites W2168175751 @default.
- W4304190229 cites W2169694221 @default.
- W4304190229 cites W2479782352 @default.
- W4304190229 cites W2519132385 @default.
- W4304190229 cites W2549601578 @default.
- W4304190229 cites W2555706257 @default.
- W4304190229 cites W2568162413 @default.
- W4304190229 cites W2726396617 @default.
- W4304190229 cites W2756395418 @default.
- W4304190229 cites W2949998840 @default.
- W4304190229 cites W2950867735 @default.
- W4304190229 cites W3091582224 @default.
- W4304190229 cites W3098834468 @default.
- W4304190229 cites W3099609308 @default.
- W4304190229 cites W3101477620 @default.
- W4304190229 cites W3103368540 @default.
- W4304190229 cites W3105178084 @default.
- W4304190229 cites W3125929818 @default.
- W4304190229 cites W3169835580 @default.
- W4304190229 cites W3172185524 @default.
- W4304190229 cites W4235169531 @default.
- W4304190229 doi "https://doi.org/10.1007/s00357-022-09421-z" @default.
- W4304190229 hasPublicationYear "2022" @default.
- W4304190229 type Work @default.
- W4304190229 citedByCount "0" @default.
- W4304190229 crossrefType "journal-article" @default.
- W4304190229 hasAuthorship W4304190229A5004888236 @default.
- W4304190229 hasAuthorship W4304190229A5026605306 @default.
- W4304190229 hasAuthorship W4304190229A5078007621 @default.
- W4304190229 hasBestOaLocation W43041902291 @default.
- W4304190229 hasConcept C106487976 @default.
- W4304190229 hasConcept C11413529 @default.
- W4304190229 hasConcept C119857082 @default.
- W4304190229 hasConcept C121332964 @default.
- W4304190229 hasConcept C124101348 @default.
- W4304190229 hasConcept C154945302 @default.
- W4304190229 hasConcept C155846161 @default.
- W4304190229 hasConcept C159985019 @default.
- W4304190229 hasConcept C161584116 @default.
- W4304190229 hasConcept C163716315 @default.
- W4304190229 hasConcept C165464430 @default.
- W4304190229 hasConcept C177384507 @default.
- W4304190229 hasConcept C178790620 @default.
- W4304190229 hasConcept C184509293 @default.
- W4304190229 hasConcept C185592680 @default.
- W4304190229 hasConcept C192562407 @default.
- W4304190229 hasConcept C2781311116 @default.
- W4304190229 hasConcept C33923547 @default.
- W4304190229 hasConcept C41008148 @default.
- W4304190229 hasConcept C49937458 @default.
- W4304190229 hasConcept C61224824 @default.
- W4304190229 hasConcept C62520636 @default.
- W4304190229 hasConcept C73555534 @default.
- W4304190229 hasConcept C93959086 @default.
- W4304190229 hasConceptScore W4304190229C106487976 @default.
- W4304190229 hasConceptScore W4304190229C11413529 @default.
- W4304190229 hasConceptScore W4304190229C119857082 @default.
- W4304190229 hasConceptScore W4304190229C121332964 @default.