Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304193510> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4304193510 abstract "Abstract We study mechanism design for nonexcludable and excludable binary public project problems. Our aim is to maximize the expected number of consumers and the expected agents’ welfare. We first show that for the nonexcludable public project model, there is no need for machine learning based mechanism design. We identify a sufficient condition on the prior distribution for the existing conservative equal costs mechanism to be the optimal strategy-proof and individually rational mechanism. For general distributions, we propose a dynamic program that solves for the optimal mechanism. For the excludable public project model, we identify a similar sufficient condition for the existing serial cost sharing mechanism to be optimal for 2 and 3 agents. We derive a numerical upper bound and use it to show that for several common distributions, the serial cost sharing mechanism is close to optimality. The serial cost sharing mechanism is not optimal in general. We propose three machine learning based approaches for designing better performing mechanisms. We focus on the family of largest unanimous mechanisms , which characterizes all strategy-proof and individually rational mechanisms for the excludable public project model. A largest unanimous mechanism describes an iterative mechanism, which is defined by an exponential number of mechanism parameters. Our first approach describes the largest unanimous mechanism family using a neural network and training is carried out by minimizing a cost function that combines the mechanism design objective and the constraint violation penalty. We interpret the largest unanimous mechanisms as price-oriented rationing-free (PORF) mechanisms, which enables us to move the mechanisms’iterative decision making off the neural network, to a separate simulation process, therefore avoiding the vanishing gradient problem . We also feed the prior distribution’s analytical form into the cost function to achieve high-quality gradients for efficient training. Our second approach treats the mechanism design task as a Markov Decision Process with an exponential number of states. During the Markov decision process, the non-consumers are gradually removed from the system. We train multiple neural networks, each for a different number of remaining agents, to learn the optimal value function on the states. Training is carried out by supervised learning toward a set of manually prepared base cases and the Bellman equation. Our third approach is based on reinforcement learning for a Partially Observable Markov Decision Process . Each RL episode randomly draws a type profile, which is hidden from the RL agent (mechanism designer). The RL agent only observes which cost share offers have been accepted under the largest unanimous mechanism under discussion. We use a continuous action space reinforcement learning approach to adjust the offer policy (i.e., adjust mechanism parameters). Lastly, our first two approaches use “supervision to manual mechanisms” as a systematic way for network initialization, which is potentially valuable for machine learning based mechanism design in general." @default.
- W4304193510 created "2022-10-11" @default.
- W4304193510 creator A5019911052 @default.
- W4304193510 creator A5020021361 @default.
- W4304193510 creator A5037088437 @default.
- W4304193510 creator A5058693284 @default.
- W4304193510 creator A5069725124 @default.
- W4304193510 creator A5084412291 @default.
- W4304193510 date "2022-10-11" @default.
- W4304193510 modified "2023-09-27" @default.
- W4304193510 title "Mechanism Design for Public Projects via Three Machine Learning Based Approaches" @default.
- W4304193510 doi "https://doi.org/10.21203/rs.3.rs-2142326/v1" @default.
- W4304193510 hasPublicationYear "2022" @default.
- W4304193510 type Work @default.
- W4304193510 citedByCount "0" @default.
- W4304193510 crossrefType "posted-content" @default.
- W4304193510 hasAuthorship W4304193510A5019911052 @default.
- W4304193510 hasAuthorship W4304193510A5020021361 @default.
- W4304193510 hasAuthorship W4304193510A5037088437 @default.
- W4304193510 hasAuthorship W4304193510A5058693284 @default.
- W4304193510 hasAuthorship W4304193510A5069725124 @default.
- W4304193510 hasAuthorship W4304193510A5084412291 @default.
- W4304193510 hasBestOaLocation W43041935101 @default.
- W4304193510 hasConcept C111472728 @default.
- W4304193510 hasConcept C126255220 @default.
- W4304193510 hasConcept C138885662 @default.
- W4304193510 hasConcept C14036430 @default.
- W4304193510 hasConcept C144237770 @default.
- W4304193510 hasConcept C153517567 @default.
- W4304193510 hasConcept C154945302 @default.
- W4304193510 hasConcept C162222271 @default.
- W4304193510 hasConcept C162324750 @default.
- W4304193510 hasConcept C175444787 @default.
- W4304193510 hasConcept C2524010 @default.
- W4304193510 hasConcept C2776036281 @default.
- W4304193510 hasConcept C33923547 @default.
- W4304193510 hasConcept C41008148 @default.
- W4304193510 hasConcept C78458016 @default.
- W4304193510 hasConcept C86803240 @default.
- W4304193510 hasConcept C89611455 @default.
- W4304193510 hasConcept C98343932 @default.
- W4304193510 hasConceptScore W4304193510C111472728 @default.
- W4304193510 hasConceptScore W4304193510C126255220 @default.
- W4304193510 hasConceptScore W4304193510C138885662 @default.
- W4304193510 hasConceptScore W4304193510C14036430 @default.
- W4304193510 hasConceptScore W4304193510C144237770 @default.
- W4304193510 hasConceptScore W4304193510C153517567 @default.
- W4304193510 hasConceptScore W4304193510C154945302 @default.
- W4304193510 hasConceptScore W4304193510C162222271 @default.
- W4304193510 hasConceptScore W4304193510C162324750 @default.
- W4304193510 hasConceptScore W4304193510C175444787 @default.
- W4304193510 hasConceptScore W4304193510C2524010 @default.
- W4304193510 hasConceptScore W4304193510C2776036281 @default.
- W4304193510 hasConceptScore W4304193510C33923547 @default.
- W4304193510 hasConceptScore W4304193510C41008148 @default.
- W4304193510 hasConceptScore W4304193510C78458016 @default.
- W4304193510 hasConceptScore W4304193510C86803240 @default.
- W4304193510 hasConceptScore W4304193510C89611455 @default.
- W4304193510 hasConceptScore W4304193510C98343932 @default.
- W4304193510 hasLocation W43041935101 @default.
- W4304193510 hasOpenAccess W4304193510 @default.
- W4304193510 hasPrimaryLocation W43041935101 @default.
- W4304193510 hasRelatedWork W1583589004 @default.
- W4304193510 hasRelatedWork W1774558157 @default.
- W4304193510 hasRelatedWork W2041564544 @default.
- W4304193510 hasRelatedWork W2097179809 @default.
- W4304193510 hasRelatedWork W2292246811 @default.
- W4304193510 hasRelatedWork W2754124033 @default.
- W4304193510 hasRelatedWork W2891830251 @default.
- W4304193510 hasRelatedWork W3121477405 @default.
- W4304193510 hasRelatedWork W3123738293 @default.
- W4304193510 hasRelatedWork W3125657696 @default.
- W4304193510 isParatext "false" @default.
- W4304193510 isRetracted "false" @default.
- W4304193510 workType "article" @default.