Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304208306> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4304208306 abstract "Over the last few decades, breast cancer has become a major health concern worldwide, particularly in the women community, as its root cause is not always known and most times it is diagnosed in advanced stages which leads to high death rate. In more recent times, machine learning techniques have been employed as computer-aided diagnosis tools for breast cancer prediction These machine learning techniques have the capacity to classify and predict this cancer into benign or malignant. The main contribution of this study is to find a model which is most suitable for predicting this kind of tumor cell. Genetic Algorithm is applied as Feature Selection method to the Wisconsin Breast Cancer dataset to select the subsets of input features that are most relevant to the target variable. We compared five machine learning regression classifiers were considered, Linear regression, Logistic regression, Random Forest, Decision Tree and Support Vector Regression. The Random Forest classifier obtained the best precision and performance accuracy. This study contributes towards the enhancement of medical technology for prediction of breast cancer, which will not only improve the well-being and health of the female community but also reduce mortality rate related to breast cancer." @default.
- W4304208306 created "2022-10-11" @default.
- W4304208306 creator A5005369282 @default.
- W4304208306 creator A5025538938 @default.
- W4304208306 date "2022-09-08" @default.
- W4304208306 modified "2023-10-05" @default.
- W4304208306 title "A Comparative Analysis of Regression Algorithms with Genetic Algorithm In The Prediction of Breast Cancer Tumors" @default.
- W4304208306 cites W1591099225 @default.
- W4304208306 cites W1981976602 @default.
- W4304208306 cites W2114252863 @default.
- W4304208306 cites W2565291328 @default.
- W4304208306 cites W2899432087 @default.
- W4304208306 cites W2979978950 @default.
- W4304208306 cites W3017044142 @default.
- W4304208306 cites W3019898597 @default.
- W4304208306 cites W3021329907 @default.
- W4304208306 cites W3046694293 @default.
- W4304208306 cites W3047321833 @default.
- W4304208306 cites W3088233101 @default.
- W4304208306 cites W3091728508 @default.
- W4304208306 cites W3113515355 @default.
- W4304208306 cites W4200089099 @default.
- W4304208306 cites W4293087599 @default.
- W4304208306 doi "https://doi.org/10.1109/ghtc55712.2022.9911033" @default.
- W4304208306 hasPublicationYear "2022" @default.
- W4304208306 type Work @default.
- W4304208306 citedByCount "1" @default.
- W4304208306 countsByYear W43042083062023 @default.
- W4304208306 crossrefType "proceedings-article" @default.
- W4304208306 hasAuthorship W4304208306A5005369282 @default.
- W4304208306 hasAuthorship W4304208306A5025538938 @default.
- W4304208306 hasConcept C105795698 @default.
- W4304208306 hasConcept C110083411 @default.
- W4304208306 hasConcept C11413529 @default.
- W4304208306 hasConcept C119857082 @default.
- W4304208306 hasConcept C121608353 @default.
- W4304208306 hasConcept C12267149 @default.
- W4304208306 hasConcept C126322002 @default.
- W4304208306 hasConcept C148483581 @default.
- W4304208306 hasConcept C151956035 @default.
- W4304208306 hasConcept C152877465 @default.
- W4304208306 hasConcept C154945302 @default.
- W4304208306 hasConcept C169258074 @default.
- W4304208306 hasConcept C33923547 @default.
- W4304208306 hasConcept C41008148 @default.
- W4304208306 hasConcept C530470458 @default.
- W4304208306 hasConcept C71924100 @default.
- W4304208306 hasConcept C83546350 @default.
- W4304208306 hasConcept C84525736 @default.
- W4304208306 hasConcept C95623464 @default.
- W4304208306 hasConceptScore W4304208306C105795698 @default.
- W4304208306 hasConceptScore W4304208306C110083411 @default.
- W4304208306 hasConceptScore W4304208306C11413529 @default.
- W4304208306 hasConceptScore W4304208306C119857082 @default.
- W4304208306 hasConceptScore W4304208306C121608353 @default.
- W4304208306 hasConceptScore W4304208306C12267149 @default.
- W4304208306 hasConceptScore W4304208306C126322002 @default.
- W4304208306 hasConceptScore W4304208306C148483581 @default.
- W4304208306 hasConceptScore W4304208306C151956035 @default.
- W4304208306 hasConceptScore W4304208306C152877465 @default.
- W4304208306 hasConceptScore W4304208306C154945302 @default.
- W4304208306 hasConceptScore W4304208306C169258074 @default.
- W4304208306 hasConceptScore W4304208306C33923547 @default.
- W4304208306 hasConceptScore W4304208306C41008148 @default.
- W4304208306 hasConceptScore W4304208306C530470458 @default.
- W4304208306 hasConceptScore W4304208306C71924100 @default.
- W4304208306 hasConceptScore W4304208306C83546350 @default.
- W4304208306 hasConceptScore W4304208306C84525736 @default.
- W4304208306 hasConceptScore W4304208306C95623464 @default.
- W4304208306 hasFunder F4320311294 @default.
- W4304208306 hasLocation W43042083061 @default.
- W4304208306 hasOpenAccess W4304208306 @default.
- W4304208306 hasPrimaryLocation W43042083061 @default.
- W4304208306 hasRelatedWork W3034132578 @default.
- W4304208306 hasRelatedWork W3128737364 @default.
- W4304208306 hasRelatedWork W3150651898 @default.
- W4304208306 hasRelatedWork W3210877509 @default.
- W4304208306 hasRelatedWork W4316658362 @default.
- W4304208306 hasRelatedWork W4321636153 @default.
- W4304208306 hasRelatedWork W4323902652 @default.
- W4304208306 hasRelatedWork W4377964522 @default.
- W4304208306 hasRelatedWork W4383535405 @default.
- W4304208306 hasRelatedWork W4384520063 @default.
- W4304208306 isParatext "false" @default.
- W4304208306 isRetracted "false" @default.
- W4304208306 workType "article" @default.