Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304607448> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4304607448 endingPage "14" @default.
- W4304607448 startingPage "1" @default.
- W4304607448 abstract "In the context of bottleneck detection, most data-driven approaches employ data from diverse production variables (machine processing times, machine state tags, input timestamps, etc.) for a detailed analysis of bottlenecks. However, for manufacturing companies initiating their digitalization process (i.e. requiring the smallest hardware investment), a bottom-top approach is still missing. In this work, a data-driven model based on minimal information (MI) retrieved from a manufacturing execution system is proposed for bottleneck detection. We consider MI timestamps when each product exits each station and show that this is the most elementary information from production-line operations, enough to autonomously generate an abstract manufacturing layout, and to detect and predict bottlenecks. A general abstract model of a production line is proposed, named queue directed graph (QDG). Incorporating the MI, the QDG model is able to represent a job-shop with a discrete production environment and to calculate production metrics. This work has been employed in the production system of a Bosch factory, in Portugal, using their manufacturing data sets for validation. Different variants of two well-known bottleneck detection methods were implemented and adapted to Bosch’s use case: the Active Period Method and the Average Active Period Method." @default.
- W4304607448 created "2022-10-12" @default.
- W4304607448 creator A5011317536 @default.
- W4304607448 creator A5036808152 @default.
- W4304607448 creator A5069233529 @default.
- W4304607448 creator A5072128869 @default.
- W4304607448 creator A5088400962 @default.
- W4304607448 date "2022-10-11" @default.
- W4304607448 modified "2023-09-26" @default.
- W4304607448 title "A data-driven model with minimal information for bottleneck detection - application at Bosch thermotechnology" @default.
- W4304607448 cites W1580801274 @default.
- W4304607448 cites W1988544202 @default.
- W4304607448 cites W1992200341 @default.
- W4304607448 cites W1998457593 @default.
- W4304607448 cites W2001022206 @default.
- W4304607448 cites W2009351465 @default.
- W4304607448 cites W2049396013 @default.
- W4304607448 cites W2065886640 @default.
- W4304607448 cites W2071712261 @default.
- W4304607448 cites W2077162165 @default.
- W4304607448 cites W2078438386 @default.
- W4304607448 cites W2101583620 @default.
- W4304607448 cites W2106177966 @default.
- W4304607448 cites W2107398937 @default.
- W4304607448 cites W2110621029 @default.
- W4304607448 cites W2110656341 @default.
- W4304607448 cites W2120617820 @default.
- W4304607448 cites W2123845384 @default.
- W4304607448 cites W2143957758 @default.
- W4304607448 cites W2149508823 @default.
- W4304607448 cites W2152692898 @default.
- W4304607448 cites W2169618379 @default.
- W4304607448 cites W2217992229 @default.
- W4304607448 cites W2506963688 @default.
- W4304607448 cites W2581472482 @default.
- W4304607448 cites W2609802772 @default.
- W4304607448 cites W2727289330 @default.
- W4304607448 cites W2888459714 @default.
- W4304607448 cites W2895120409 @default.
- W4304607448 cites W2945736956 @default.
- W4304607448 cites W2967286357 @default.
- W4304607448 cites W2980740670 @default.
- W4304607448 cites W3005974829 @default.
- W4304607448 cites W3011744489 @default.
- W4304607448 cites W3047116817 @default.
- W4304607448 cites W3128809203 @default.
- W4304607448 cites W3142948095 @default.
- W4304607448 cites W3181710008 @default.
- W4304607448 cites W3190121210 @default.
- W4304607448 cites W4226170266 @default.
- W4304607448 cites W4226250312 @default.
- W4304607448 cites W4242176614 @default.
- W4304607448 cites W612251119 @default.
- W4304607448 doi "https://doi.org/10.1080/17509653.2022.2116121" @default.
- W4304607448 hasPublicationYear "2022" @default.
- W4304607448 type Work @default.
- W4304607448 citedByCount "1" @default.
- W4304607448 countsByYear W43046074482022 @default.
- W4304607448 crossrefType "journal-article" @default.
- W4304607448 hasAuthorship W4304607448A5011317536 @default.
- W4304607448 hasAuthorship W4304607448A5036808152 @default.
- W4304607448 hasAuthorship W4304607448A5069233529 @default.
- W4304607448 hasAuthorship W4304607448A5072128869 @default.
- W4304607448 hasAuthorship W4304607448A5088400962 @default.
- W4304607448 hasConcept C149635348 @default.
- W4304607448 hasConcept C154945302 @default.
- W4304607448 hasConcept C2780513914 @default.
- W4304607448 hasConcept C41008148 @default.
- W4304607448 hasConcept C60008888 @default.
- W4304607448 hasConcept C73555534 @default.
- W4304607448 hasConceptScore W4304607448C149635348 @default.
- W4304607448 hasConceptScore W4304607448C154945302 @default.
- W4304607448 hasConceptScore W4304607448C2780513914 @default.
- W4304607448 hasConceptScore W4304607448C41008148 @default.
- W4304607448 hasConceptScore W4304607448C60008888 @default.
- W4304607448 hasConceptScore W4304607448C73555534 @default.
- W4304607448 hasLocation W43046074481 @default.
- W4304607448 hasOpenAccess W4304607448 @default.
- W4304607448 hasPrimaryLocation W43046074481 @default.
- W4304607448 hasRelatedWork W1504394672 @default.
- W4304607448 hasRelatedWork W2357325779 @default.
- W4304607448 hasRelatedWork W2374412966 @default.
- W4304607448 hasRelatedWork W2381356463 @default.
- W4304607448 hasRelatedWork W2622284819 @default.
- W4304607448 hasRelatedWork W2785356762 @default.
- W4304607448 hasRelatedWork W2908470371 @default.
- W4304607448 hasRelatedWork W2950826591 @default.
- W4304607448 hasRelatedWork W2996506326 @default.
- W4304607448 hasRelatedWork W4300774107 @default.
- W4304607448 isParatext "false" @default.
- W4304607448 isRetracted "false" @default.
- W4304607448 workType "article" @default.