Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304636491> ?p ?o ?g. }
- W4304636491 endingPage "120" @default.
- W4304636491 startingPage "100" @default.
- W4304636491 abstract "AbstractThe convolutional neural network (CNN) has gained widespread adoption in computer vision (CV) applications in recent years. However, the high computational complexity of spatial (conventional) CNNs makes real-time deployment in CV applications difficult. Spectral representation (frequency domain) is one of the most effective ways to reduce the large computational workload in CNN models, and thus beneficial for any processing platform. By reducing the size of feature maps, a compact spectral CNN model is proposed and developed in this paper by utilizing just the lower frequency components of the feature maps. When compared to similar models in the spatial domain, the proposed compact spectral CNN model achieves at least 24.11(times ) and 4.96(times ) faster classification speed on AT &T face recognition and MNIST digit/fashion classification datasets, respectively. KeywordsConvolutional neural network (CNN)Spectral domain CNN" @default.
- W4304636491 created "2022-10-12" @default.
- W4304636491 creator A5026822024 @default.
- W4304636491 creator A5034942770 @default.
- W4304636491 creator A5073999174 @default.
- W4304636491 creator A5076653747 @default.
- W4304636491 creator A5076766760 @default.
- W4304636491 date "2022-10-13" @default.
- W4304636491 modified "2023-09-26" @default.
- W4304636491 title "A Compact Spectral Model for Convolutional Neural Network" @default.
- W4304636491 cites W1005811612 @default.
- W4304636491 cites W1487564550 @default.
- W4304636491 cites W1862032218 @default.
- W4304636491 cites W1902041153 @default.
- W4304636491 cites W1963882359 @default.
- W4304636491 cites W1993617052 @default.
- W4304636491 cites W2026740272 @default.
- W4304636491 cites W2050622140 @default.
- W4304636491 cites W2094756095 @default.
- W4304636491 cites W2101765144 @default.
- W4304636491 cites W2117130368 @default.
- W4304636491 cites W2136189984 @default.
- W4304636491 cites W2172654076 @default.
- W4304636491 cites W2276486856 @default.
- W4304636491 cites W2500509404 @default.
- W4304636491 cites W2503458650 @default.
- W4304636491 cites W2597215741 @default.
- W4304636491 cites W2604319603 @default.
- W4304636491 cites W2618530766 @default.
- W4304636491 cites W2765235648 @default.
- W4304636491 cites W2794535120 @default.
- W4304636491 cites W2806014628 @default.
- W4304636491 cites W2874662585 @default.
- W4304636491 cites W2884675507 @default.
- W4304636491 cites W2895540242 @default.
- W4304636491 cites W2907463061 @default.
- W4304636491 cites W2914725495 @default.
- W4304636491 cites W2919115771 @default.
- W4304636491 cites W2963512705 @default.
- W4304636491 cites W2963944087 @default.
- W4304636491 cites W3005712428 @default.
- W4304636491 cites W3010695715 @default.
- W4304636491 cites W3083069937 @default.
- W4304636491 cites W3163173460 @default.
- W4304636491 cites W3163835446 @default.
- W4304636491 cites W3196957369 @default.
- W4304636491 cites W3212049189 @default.
- W4304636491 doi "https://doi.org/10.1007/978-3-031-18461-1_7" @default.
- W4304636491 hasPublicationYear "2022" @default.
- W4304636491 type Work @default.
- W4304636491 citedByCount "0" @default.
- W4304636491 crossrefType "book-chapter" @default.
- W4304636491 hasAuthorship W4304636491A5026822024 @default.
- W4304636491 hasAuthorship W4304636491A5034942770 @default.
- W4304636491 hasAuthorship W4304636491A5073999174 @default.
- W4304636491 hasAuthorship W4304636491A5076653747 @default.
- W4304636491 hasAuthorship W4304636491A5076766760 @default.
- W4304636491 hasConcept C11413529 @default.
- W4304636491 hasConcept C134306372 @default.
- W4304636491 hasConcept C138885662 @default.
- W4304636491 hasConcept C153180895 @default.
- W4304636491 hasConcept C154945302 @default.
- W4304636491 hasConcept C17744445 @default.
- W4304636491 hasConcept C179799912 @default.
- W4304636491 hasConcept C190502265 @default.
- W4304636491 hasConcept C19118579 @default.
- W4304636491 hasConcept C199539241 @default.
- W4304636491 hasConcept C2776359362 @default.
- W4304636491 hasConcept C2776401178 @default.
- W4304636491 hasConcept C31972630 @default.
- W4304636491 hasConcept C33923547 @default.
- W4304636491 hasConcept C36503486 @default.
- W4304636491 hasConcept C41008148 @default.
- W4304636491 hasConcept C41895202 @default.
- W4304636491 hasConcept C50644808 @default.
- W4304636491 hasConcept C81363708 @default.
- W4304636491 hasConcept C94625758 @default.
- W4304636491 hasConceptScore W4304636491C11413529 @default.
- W4304636491 hasConceptScore W4304636491C134306372 @default.
- W4304636491 hasConceptScore W4304636491C138885662 @default.
- W4304636491 hasConceptScore W4304636491C153180895 @default.
- W4304636491 hasConceptScore W4304636491C154945302 @default.
- W4304636491 hasConceptScore W4304636491C17744445 @default.
- W4304636491 hasConceptScore W4304636491C179799912 @default.
- W4304636491 hasConceptScore W4304636491C190502265 @default.
- W4304636491 hasConceptScore W4304636491C19118579 @default.
- W4304636491 hasConceptScore W4304636491C199539241 @default.
- W4304636491 hasConceptScore W4304636491C2776359362 @default.
- W4304636491 hasConceptScore W4304636491C2776401178 @default.
- W4304636491 hasConceptScore W4304636491C31972630 @default.
- W4304636491 hasConceptScore W4304636491C33923547 @default.
- W4304636491 hasConceptScore W4304636491C36503486 @default.
- W4304636491 hasConceptScore W4304636491C41008148 @default.
- W4304636491 hasConceptScore W4304636491C41895202 @default.
- W4304636491 hasConceptScore W4304636491C50644808 @default.
- W4304636491 hasConceptScore W4304636491C81363708 @default.
- W4304636491 hasConceptScore W4304636491C94625758 @default.
- W4304636491 hasLocation W43046364911 @default.