Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304687557> ?p ?o ?g. }
- W4304687557 abstract "Background: N6 methyladenosine (m6A)-related noncoding RNAs (including lncRNAs and miRNAs) are closely related to the development of cancer. However, the gene signature and prognostic value of m6A regulators and m6A-associated RNAs in regulating sarcoma (SARC) development and progression remain largely unexplored. Therefore, further research is required. Methods: We obtained expression data for RNA sequencing (RNA-seq) and miRNAs of SARC from The Cancer Genome Atlas (TCGA) datasets. Correlation analysis and two target gene prediction databases (miRTarBase and LncBase v.2) were used to deduce m6A-related miRNAs and lncRNAs, and Cytoscape software was used to construct ceRNA-regulating networks. Based on univariate Cox regression and least absolute shrinkage and selection operator (LASSO) Cox regression analyses, an m6A-associated RNA risk signature (m6Ascore) model was established. Prognostic differences between subgroups were explored using Kaplan-Meier (KM) analysis. Risk score-related biological phenotypes were analyzed in terms of functional enrichment, tumor immune signature, and tumor mutation signature. Finally, potential immunotherapy features and drug sensitivity predictions for this model were also discussed. Results: A total of 16 miRNAs, 104 lncRNAs, and 11 mRNAs were incorporated into the ceRNA network. The risk score was obtained based on RP11-283I3.6, hsa-miR-455-3p, and CBLL1. Patients were divided into two risk groups using the risk score, with patients in the low-risk group having longer overall survival (OS) than those in the high-risk group. The receiver operating characteristic (ROC) curves indicated that risk characteristic performed well in predicting the prognosis of patients with SARC. In addition, lower m6Ascore was also positively correlated with the abundance of immune cells such as monocytes and mast cells activated, and several immune checkpoint genes were highly expressed in the low-m6Ascore group. According to our analysis, lower m6Ascore may lead to better immunotherapy response and OS outcomes. The risk signature was significantly associated with the chemosensitivity of SARC. Finally, a nomogram was constructed to predict the OS in patients with SARC. The concordance index (C-index) for the nomogram was 0.744 (95% CI: 0.707-0.784). The decision curve analysis (DCA), calibration plot, and ROC curve all showed that this nomogram had good predictive performance. Conclusion: This m6Ascore risk model based on m6A RNA methylation regulator-related RNAs may be promising for clinical prediction of prognosis and might contain potential biomarkers for treatment response prediction for SARC patients." @default.
- W4304687557 created "2022-10-12" @default.
- W4304687557 creator A5017947172 @default.
- W4304687557 creator A5020135831 @default.
- W4304687557 creator A5039832836 @default.
- W4304687557 creator A5073531557 @default.
- W4304687557 creator A5075222441 @default.
- W4304687557 creator A5081969040 @default.
- W4304687557 date "2022-10-12" @default.
- W4304687557 modified "2023-09-26" @default.
- W4304687557 title "The development of a novel signature based on the m6A RNA methylation regulator-related ceRNA network to predict prognosis and therapy response in sarcomas" @default.
- W4304687557 cites W1540070932 @default.
- W4304687557 cites W1606664976 @default.
- W4304687557 cites W1989683090 @default.
- W4304687557 cites W2018826865 @default.
- W4304687557 cites W2046387002 @default.
- W4304687557 cites W2070528830 @default.
- W4304687557 cites W2143130202 @default.
- W4304687557 cites W2155058520 @default.
- W4304687557 cites W2172312226 @default.
- W4304687557 cites W2516868930 @default.
- W4304687557 cites W2762279748 @default.
- W4304687557 cites W2769533511 @default.
- W4304687557 cites W2797675588 @default.
- W4304687557 cites W2800160190 @default.
- W4304687557 cites W2803154276 @default.
- W4304687557 cites W2809640739 @default.
- W4304687557 cites W2886988891 @default.
- W4304687557 cites W2895840881 @default.
- W4304687557 cites W2910160623 @default.
- W4304687557 cites W2911188335 @default.
- W4304687557 cites W2912369228 @default.
- W4304687557 cites W2913739979 @default.
- W4304687557 cites W2940737530 @default.
- W4304687557 cites W2946196838 @default.
- W4304687557 cites W2947674709 @default.
- W4304687557 cites W2966613119 @default.
- W4304687557 cites W2971469782 @default.
- W4304687557 cites W2972243813 @default.
- W4304687557 cites W2976152472 @default.
- W4304687557 cites W2976878186 @default.
- W4304687557 cites W2990757766 @default.
- W4304687557 cites W3008096828 @default.
- W4304687557 cites W3017173206 @default.
- W4304687557 cites W3024415344 @default.
- W4304687557 cites W3025298702 @default.
- W4304687557 cites W3038938369 @default.
- W4304687557 cites W3046948258 @default.
- W4304687557 cites W3047621317 @default.
- W4304687557 cites W3066212727 @default.
- W4304687557 cites W3081143873 @default.
- W4304687557 cites W3082007437 @default.
- W4304687557 cites W3083844715 @default.
- W4304687557 cites W3090056625 @default.
- W4304687557 cites W3092533351 @default.
- W4304687557 cites W3110333651 @default.
- W4304687557 cites W3114632245 @default.
- W4304687557 cites W3115919597 @default.
- W4304687557 cites W3126175340 @default.
- W4304687557 cites W3128223629 @default.
- W4304687557 cites W3128985652 @default.
- W4304687557 cites W3135826664 @default.
- W4304687557 cites W3155478428 @default.
- W4304687557 cites W3159888894 @default.
- W4304687557 cites W3170478728 @default.
- W4304687557 cites W3172911572 @default.
- W4304687557 cites W3190120697 @default.
- W4304687557 cites W3192558601 @default.
- W4304687557 cites W3196396792 @default.
- W4304687557 cites W3203629686 @default.
- W4304687557 cites W3206034215 @default.
- W4304687557 cites W3207962110 @default.
- W4304687557 cites W4223933730 @default.
- W4304687557 cites W4243811925 @default.
- W4304687557 doi "https://doi.org/10.3389/fgene.2022.894080" @default.
- W4304687557 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36313417" @default.
- W4304687557 hasPublicationYear "2022" @default.
- W4304687557 type Work @default.
- W4304687557 citedByCount "1" @default.
- W4304687557 countsByYear W43046875572023 @default.
- W4304687557 crossrefType "journal-article" @default.
- W4304687557 hasAuthorship W4304687557A5017947172 @default.
- W4304687557 hasAuthorship W4304687557A5020135831 @default.
- W4304687557 hasAuthorship W4304687557A5039832836 @default.
- W4304687557 hasAuthorship W4304687557A5073531557 @default.
- W4304687557 hasAuthorship W4304687557A5075222441 @default.
- W4304687557 hasAuthorship W4304687557A5081969040 @default.
- W4304687557 hasBestOaLocation W43046875571 @default.
- W4304687557 hasConcept C104317684 @default.
- W4304687557 hasConcept C11783203 @default.
- W4304687557 hasConcept C126322002 @default.
- W4304687557 hasConcept C143998085 @default.
- W4304687557 hasConcept C145059251 @default.
- W4304687557 hasConcept C2779134260 @default.
- W4304687557 hasConcept C50382708 @default.
- W4304687557 hasConcept C54355233 @default.
- W4304687557 hasConcept C58471807 @default.
- W4304687557 hasConcept C60365752 @default.
- W4304687557 hasConcept C60644358 @default.
- W4304687557 hasConcept C62203573 @default.