Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304689177> ?p ?o ?g. }
- W4304689177 endingPage "13022" @default.
- W4304689177 startingPage "13022" @default.
- W4304689177 abstract "Accurate prediction of photovoltaic power is of great significance to the safe operation of power grids. In order to improve the prediction accuracy, a similar day clustering convolutional neural network (CNN)–informer model was proposed to predict the photovoltaic power. Based on correlation analysis, it was determined that global horizontal radiation was the meteorological factor that had the greatest impact on photovoltaic power, and the dataset was divided into four categories according to the correlation between meteorological factors and photovoltaic power fluctuation characteristics; then, a CNN was used to extract the feature information and trends of different subsets, and the features output by CNN were fused and input into the informer model. The informer model was used to establish the temporal feature relationship between historical data, and the final photovoltaic power generation power prediction result was obtained. The experimental results show that the proposed CNN–informer prediction method has high accuracy and stability in photovoltaic power generation prediction and outperforms other deep learning methods." @default.
- W4304689177 created "2022-10-12" @default.
- W4304689177 creator A5000965108 @default.
- W4304689177 creator A5005161947 @default.
- W4304689177 creator A5026319716 @default.
- W4304689177 creator A5058257282 @default.
- W4304689177 creator A5075736599 @default.
- W4304689177 creator A5084132558 @default.
- W4304689177 date "2022-10-12" @default.
- W4304689177 modified "2023-10-14" @default.
- W4304689177 title "Prediction of Photovoltaic Power by the Informer Model Based on Convolutional Neural Network" @default.
- W4304689177 cites W1999481089 @default.
- W4304689177 cites W2002238439 @default.
- W4304689177 cites W2007062519 @default.
- W4304689177 cites W2021580251 @default.
- W4304689177 cites W2026844045 @default.
- W4304689177 cites W2028782916 @default.
- W4304689177 cites W2033406960 @default.
- W4304689177 cites W2041065069 @default.
- W4304689177 cites W2055911634 @default.
- W4304689177 cites W2119760459 @default.
- W4304689177 cites W2138380733 @default.
- W4304689177 cites W2145804350 @default.
- W4304689177 cites W2513823490 @default.
- W4304689177 cites W2751698537 @default.
- W4304689177 cites W2763265940 @default.
- W4304689177 cites W2790021805 @default.
- W4304689177 cites W2792326773 @default.
- W4304689177 cites W2888165363 @default.
- W4304689177 cites W2971368394 @default.
- W4304689177 cites W2977155375 @default.
- W4304689177 cites W2997700007 @default.
- W4304689177 cites W3017361973 @default.
- W4304689177 cites W3021727993 @default.
- W4304689177 cites W3038070293 @default.
- W4304689177 cites W3083957475 @default.
- W4304689177 cites W3092828462 @default.
- W4304689177 cites W3108854659 @default.
- W4304689177 cites W3112644111 @default.
- W4304689177 cites W3160605082 @default.
- W4304689177 cites W3183786811 @default.
- W4304689177 cites W3198049609 @default.
- W4304689177 cites W3206626384 @default.
- W4304689177 cites W4210482881 @default.
- W4304689177 cites W4210778017 @default.
- W4304689177 cites W4224122722 @default.
- W4304689177 cites W4229065772 @default.
- W4304689177 cites W4280636881 @default.
- W4304689177 cites W4284962670 @default.
- W4304689177 cites W4289868505 @default.
- W4304689177 cites W4290755274 @default.
- W4304689177 cites W4290963933 @default.
- W4304689177 cites W4301516930 @default.
- W4304689177 doi "https://doi.org/10.3390/su142013022" @default.
- W4304689177 hasPublicationYear "2022" @default.
- W4304689177 type Work @default.
- W4304689177 citedByCount "7" @default.
- W4304689177 countsByYear W43046891772023 @default.
- W4304689177 crossrefType "journal-article" @default.
- W4304689177 hasAuthorship W4304689177A5000965108 @default.
- W4304689177 hasAuthorship W4304689177A5005161947 @default.
- W4304689177 hasAuthorship W4304689177A5026319716 @default.
- W4304689177 hasAuthorship W4304689177A5058257282 @default.
- W4304689177 hasAuthorship W4304689177A5075736599 @default.
- W4304689177 hasAuthorship W4304689177A5084132558 @default.
- W4304689177 hasBestOaLocation W43046891771 @default.
- W4304689177 hasConcept C112972136 @default.
- W4304689177 hasConcept C119599485 @default.
- W4304689177 hasConcept C119857082 @default.
- W4304689177 hasConcept C121332964 @default.
- W4304689177 hasConcept C124101348 @default.
- W4304689177 hasConcept C127413603 @default.
- W4304689177 hasConcept C138885662 @default.
- W4304689177 hasConcept C153180895 @default.
- W4304689177 hasConcept C154945302 @default.
- W4304689177 hasConcept C163258240 @default.
- W4304689177 hasConcept C2776401178 @default.
- W4304689177 hasConcept C41008148 @default.
- W4304689177 hasConcept C41291067 @default.
- W4304689177 hasConcept C41895202 @default.
- W4304689177 hasConcept C45804977 @default.
- W4304689177 hasConcept C50644808 @default.
- W4304689177 hasConcept C62520636 @default.
- W4304689177 hasConcept C73555534 @default.
- W4304689177 hasConcept C81363708 @default.
- W4304689177 hasConceptScore W4304689177C112972136 @default.
- W4304689177 hasConceptScore W4304689177C119599485 @default.
- W4304689177 hasConceptScore W4304689177C119857082 @default.
- W4304689177 hasConceptScore W4304689177C121332964 @default.
- W4304689177 hasConceptScore W4304689177C124101348 @default.
- W4304689177 hasConceptScore W4304689177C127413603 @default.
- W4304689177 hasConceptScore W4304689177C138885662 @default.
- W4304689177 hasConceptScore W4304689177C153180895 @default.
- W4304689177 hasConceptScore W4304689177C154945302 @default.
- W4304689177 hasConceptScore W4304689177C163258240 @default.
- W4304689177 hasConceptScore W4304689177C2776401178 @default.
- W4304689177 hasConceptScore W4304689177C41008148 @default.
- W4304689177 hasConceptScore W4304689177C41291067 @default.