Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304689990> ?p ?o ?g. }
- W4304689990 endingPage "110790" @default.
- W4304689990 startingPage "110790" @default.
- W4304689990 abstract "• The three pulsations of the gas bubble of the underwater detonation tube are captured by high speed photography. • The frequency spectrum and energy distribution of the signals in water and in the air are obtained by wavelet transform and fast Fourier transform. • The transmission characteristics of the pulsating signal and the shock wave degenerated by the detonation wave on the water-air interface have been preliminarily analyzed, which proves that the low-frequency pulsating signal has a stronger transmission ability. An underwater detonation tube (DT) experiment is carried out to investigate the pressure field characteristics of the detonation gas jet propagating under and above a free surface. In the experiment, a 0.78 L DT filled with 0.12 MPa methane-oxygen mixture is detonated. The evolution of jet shape and pressure field are recorded using high-speed photography, pressure sensors, hydrophones and microphones. There are mainly three bubble pulsation periods determined from the bubble evolution and field pressure evolution, and the bubble shape tends to be stable after the pulsation ends. The fast Fourier Transform and Wavelet Transform method are adopted to analyze the frequency characteristics and energy distribution of the pressure signals. The energy of the bubble pulsation and the energy of the shock wave have different contributions in different media. Specifically, the high-frequency energy formed by reverberation contributes more in water, while the low-frequency energy formed by bubble pulsation is the main part of the energy in the air. The shock wave formed by the decoupling of the detonation wave attenuates sharply during its propagation. The distribution characteristics of the detonation acoustic signal in the air are analyzed using the band-pass filter pair, and the transmission coefficient is defined to study the ability of the detonation acoustic signal to transmit through the water-air interface. The result indicates that the low-frequency signals, such as bubble pulsations, can transmit out of the water-air interface at a larger transmission angle more easily than the high-frequency signals. The signal of bubble pulsation has a stronger transmission ability through the water-air interface compared to the shock wave. Combining the bubble evolution and pressure evolution is helpful to analyze the different signal components in the water and air, which plays an important role in the analysis of the pressure field characteristics ." @default.
- W4304689990 created "2022-10-12" @default.
- W4304689990 creator A5004781661 @default.
- W4304689990 creator A5009440633 @default.
- W4304689990 creator A5011065863 @default.
- W4304689990 creator A5018982786 @default.
- W4304689990 creator A5031810848 @default.
- W4304689990 creator A5068310044 @default.
- W4304689990 creator A5071037763 @default.
- W4304689990 date "2023-02-01" @default.
- W4304689990 modified "2023-10-18" @default.
- W4304689990 title "Pressure field characteristics of underwater detonation gas jet below and above free water surface" @default.
- W4304689990 cites W1979261792 @default.
- W4304689990 cites W1991600528 @default.
- W4304689990 cites W1996056588 @default.
- W4304689990 cites W2008324698 @default.
- W4304689990 cites W2023388718 @default.
- W4304689990 cites W2029817503 @default.
- W4304689990 cites W2031732357 @default.
- W4304689990 cites W2045748097 @default.
- W4304689990 cites W2058486820 @default.
- W4304689990 cites W2075160829 @default.
- W4304689990 cites W2087644754 @default.
- W4304689990 cites W2273360816 @default.
- W4304689990 cites W2332975494 @default.
- W4304689990 cites W2589104651 @default.
- W4304689990 cites W2804532451 @default.
- W4304689990 cites W2887186758 @default.
- W4304689990 cites W2896041211 @default.
- W4304689990 cites W2909550834 @default.
- W4304689990 cites W2952978001 @default.
- W4304689990 cites W2981299204 @default.
- W4304689990 cites W2990883244 @default.
- W4304689990 cites W3028511070 @default.
- W4304689990 cites W3113451209 @default.
- W4304689990 cites W3166903029 @default.
- W4304689990 cites W3172557238 @default.
- W4304689990 cites W3202354762 @default.
- W4304689990 cites W4224985634 @default.
- W4304689990 cites W4283745382 @default.
- W4304689990 cites W4285087578 @default.
- W4304689990 cites W2313945146 @default.
- W4304689990 doi "https://doi.org/10.1016/j.expthermflusci.2022.110790" @default.
- W4304689990 hasPublicationYear "2023" @default.
- W4304689990 type Work @default.
- W4304689990 citedByCount "2" @default.
- W4304689990 countsByYear W43046899902023 @default.
- W4304689990 crossrefType "journal-article" @default.
- W4304689990 hasAuthorship W4304689990A5004781661 @default.
- W4304689990 hasAuthorship W4304689990A5009440633 @default.
- W4304689990 hasAuthorship W4304689990A5011065863 @default.
- W4304689990 hasAuthorship W4304689990A5018982786 @default.
- W4304689990 hasAuthorship W4304689990A5031810848 @default.
- W4304689990 hasAuthorship W4304689990A5068310044 @default.
- W4304689990 hasAuthorship W4304689990A5071037763 @default.
- W4304689990 hasConcept C111368507 @default.
- W4304689990 hasConcept C119947313 @default.
- W4304689990 hasConcept C121332964 @default.
- W4304689990 hasConcept C127313418 @default.
- W4304689990 hasConcept C154238967 @default.
- W4304689990 hasConcept C157915830 @default.
- W4304689990 hasConcept C171889981 @default.
- W4304689990 hasConcept C178790620 @default.
- W4304689990 hasConcept C185592680 @default.
- W4304689990 hasConcept C192562407 @default.
- W4304689990 hasConcept C203397868 @default.
- W4304689990 hasConcept C2524010 @default.
- W4304689990 hasConcept C2776799497 @default.
- W4304689990 hasConcept C2781349841 @default.
- W4304689990 hasConcept C2994381353 @default.
- W4304689990 hasConcept C33923547 @default.
- W4304689990 hasConcept C39432304 @default.
- W4304689990 hasConcept C56200935 @default.
- W4304689990 hasConcept C57879066 @default.
- W4304689990 hasConcept C97355855 @default.
- W4304689990 hasConcept C98083399 @default.
- W4304689990 hasConceptScore W4304689990C111368507 @default.
- W4304689990 hasConceptScore W4304689990C119947313 @default.
- W4304689990 hasConceptScore W4304689990C121332964 @default.
- W4304689990 hasConceptScore W4304689990C127313418 @default.
- W4304689990 hasConceptScore W4304689990C154238967 @default.
- W4304689990 hasConceptScore W4304689990C157915830 @default.
- W4304689990 hasConceptScore W4304689990C171889981 @default.
- W4304689990 hasConceptScore W4304689990C178790620 @default.
- W4304689990 hasConceptScore W4304689990C185592680 @default.
- W4304689990 hasConceptScore W4304689990C192562407 @default.
- W4304689990 hasConceptScore W4304689990C203397868 @default.
- W4304689990 hasConceptScore W4304689990C2524010 @default.
- W4304689990 hasConceptScore W4304689990C2776799497 @default.
- W4304689990 hasConceptScore W4304689990C2781349841 @default.
- W4304689990 hasConceptScore W4304689990C2994381353 @default.
- W4304689990 hasConceptScore W4304689990C33923547 @default.
- W4304689990 hasConceptScore W4304689990C39432304 @default.
- W4304689990 hasConceptScore W4304689990C56200935 @default.
- W4304689990 hasConceptScore W4304689990C57879066 @default.
- W4304689990 hasConceptScore W4304689990C97355855 @default.
- W4304689990 hasConceptScore W4304689990C98083399 @default.
- W4304689990 hasLocation W43046899901 @default.