Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304690317> ?p ?o ?g. }
- W4304690317 endingPage "1748" @default.
- W4304690317 startingPage "1722" @default.
- W4304690317 abstract "The level of landscape heterogeneity may affect the performance of remote sensing based land use / land cover classification. However, the relationship between mapping accuracy of built-up surfaces and morphological characteristics of built-up areas has not been analyzed explicitly, and previous studies typically rely on aggregated landscape metrics to quantify the morphology of built-up areas, neglecting the fine-grained spatial variation and scale dependency of such metrics. Herein, we aim to fill this gap by assessing the associations between focal landscape metrics, derived from binary built-up surfaces, and focal data accuracy estimates. We test our approach for built-up surfaces from the Global Human Settlement Layer (GHSL) for Massachusetts (USA), by examining the explanatory power of landscape metrics for predictive modeling of commission and omission errors in the GHS-BUILT R2018A data product. We find that the Landscape Shape Index (LSI) exhibits the highest levels of correlation to focal accuracy measures. These relationships are scale-dependent, and increase with the level of spatial support. Our results are consistent across different regions within the U.S., and we find that the Recall measure has the strongest relationship to measures of built-up surface morphology across different temporal epochs and spatial resolutions. Regression analysis results (R2>0.9) indicate that it is possible to estimate commission errors in the GHSL in the absence of reference data, and that omission errors in the GHSL can be modeled without accessing the data themselves. Lastly, we test the generalizability of our predictive accuracy models to a different version of the GHSL (i.e., the GHS-BUILT-S2) covering a study area in North Carolina. We find varying levels of model transferability that increases with the spatial support at which landscape metrics and accuracy estimates are calculated." @default.
- W4304690317 created "2022-10-12" @default.
- W4304690317 creator A5036895728 @default.
- W4304690317 creator A5087645671 @default.
- W4304690317 date "2022-10-12" @default.
- W4304690317 modified "2023-10-14" @default.
- W4304690317 title "Assessing the relationship between morphology and mapping accuracy of built-up areas derived from global human settlement data" @default.
- W4304690317 cites W1583323492 @default.
- W4304690317 cites W182516034 @default.
- W4304690317 cites W1911443818 @default.
- W4304690317 cites W1988790447 @default.
- W4304690317 cites W1989314352 @default.
- W4304690317 cites W1991361881 @default.
- W4304690317 cites W1992949796 @default.
- W4304690317 cites W1995378944 @default.
- W4304690317 cites W1995716834 @default.
- W4304690317 cites W2001747857 @default.
- W4304690317 cites W2004206930 @default.
- W4304690317 cites W2037507183 @default.
- W4304690317 cites W2044300373 @default.
- W4304690317 cites W2065040528 @default.
- W4304690317 cites W2074662131 @default.
- W4304690317 cites W2077207370 @default.
- W4304690317 cites W2081694572 @default.
- W4304690317 cites W2083360347 @default.
- W4304690317 cites W2104896032 @default.
- W4304690317 cites W2115268776 @default.
- W4304690317 cites W2144506763 @default.
- W4304690317 cites W2168293455 @default.
- W4304690317 cites W2170021941 @default.
- W4304690317 cites W2181914484 @default.
- W4304690317 cites W2259714867 @default.
- W4304690317 cites W2261059368 @default.
- W4304690317 cites W2320467349 @default.
- W4304690317 cites W2332473824 @default.
- W4304690317 cites W2474829489 @default.
- W4304690317 cites W2580696810 @default.
- W4304690317 cites W2599744530 @default.
- W4304690317 cites W2750050355 @default.
- W4304690317 cites W2763014865 @default.
- W4304690317 cites W2780555403 @default.
- W4304690317 cites W2801774111 @default.
- W4304690317 cites W2884200281 @default.
- W4304690317 cites W2948069880 @default.
- W4304690317 cites W2953011380 @default.
- W4304690317 cites W2956102956 @default.
- W4304690317 cites W2978030930 @default.
- W4304690317 cites W2978864577 @default.
- W4304690317 cites W2990323597 @default.
- W4304690317 cites W2990728890 @default.
- W4304690317 cites W3000297142 @default.
- W4304690317 cites W3031336257 @default.
- W4304690317 cites W3031956841 @default.
- W4304690317 cites W3041569380 @default.
- W4304690317 cites W3043036258 @default.
- W4304690317 cites W3099985666 @default.
- W4304690317 cites W3111923971 @default.
- W4304690317 cites W3112988778 @default.
- W4304690317 cites W3160803333 @default.
- W4304690317 cites W3179328848 @default.
- W4304690317 cites W4205400539 @default.
- W4304690317 cites W4226296298 @default.
- W4304690317 cites W4281657965 @default.
- W4304690317 cites W4282826576 @default.
- W4304690317 cites W4283217355 @default.
- W4304690317 cites W86137262 @default.
- W4304690317 doi "https://doi.org/10.1080/15481603.2022.2131192" @default.
- W4304690317 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36593994" @default.
- W4304690317 hasPublicationYear "2022" @default.
- W4304690317 type Work @default.
- W4304690317 citedByCount "1" @default.
- W4304690317 countsByYear W43046903172023 @default.
- W4304690317 crossrefType "journal-article" @default.
- W4304690317 hasAuthorship W4304690317A5036895728 @default.
- W4304690317 hasAuthorship W4304690317A5087645671 @default.
- W4304690317 hasBestOaLocation W43046903171 @default.
- W4304690317 hasConcept C100970517 @default.
- W4304690317 hasConcept C105795698 @default.
- W4304690317 hasConcept C124101348 @default.
- W4304690317 hasConcept C18903297 @default.
- W4304690317 hasConcept C205649164 @default.
- W4304690317 hasConcept C27158222 @default.
- W4304690317 hasConcept C2778755073 @default.
- W4304690317 hasConcept C2780648208 @default.
- W4304690317 hasConcept C33923547 @default.
- W4304690317 hasConcept C41008148 @default.
- W4304690317 hasConcept C4792198 @default.
- W4304690317 hasConcept C58640448 @default.
- W4304690317 hasConcept C62649853 @default.
- W4304690317 hasConcept C86803240 @default.
- W4304690317 hasConceptScore W4304690317C100970517 @default.
- W4304690317 hasConceptScore W4304690317C105795698 @default.
- W4304690317 hasConceptScore W4304690317C124101348 @default.
- W4304690317 hasConceptScore W4304690317C18903297 @default.
- W4304690317 hasConceptScore W4304690317C205649164 @default.
- W4304690317 hasConceptScore W4304690317C27158222 @default.
- W4304690317 hasConceptScore W4304690317C2778755073 @default.
- W4304690317 hasConceptScore W4304690317C2780648208 @default.