Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304698180> ?p ?o ?g. }
- W4304698180 endingPage "100190" @default.
- W4304698180 startingPage "100190" @default.
- W4304698180 abstract "Genomics-driven drug discovery is indispensable for accelerating the development of novel therapeutic targets. However, the drug discovery framework based on evidence from genome-wide association studies (GWASs) has not been established, especially for cross-population GWAS meta-analysis. Here, we introduce a practical guideline for genomics-driven drug discovery for cross-population meta-analysis, as lessons from the Global Biobank Meta-analysis Initiative (GBMI). Our drug discovery framework encompassed three methodologies and was applied to the 13 common diseases targeted by GBMI (Nmean = 1,329,242). Individual methodologies complementarily prioritized drugs and drug targets, which were systematically validated by referring previously known drug-disease relationships. Integration of the three methodologies provided a comprehensive catalog of candidate drugs for repositioning, nominating promising drug candidates targeting the genes involved in the coagulation process for venous thromboembolism and the interleukin-4 and interleukin-13 signaling pathway for gout. Our study highlighted key factors for successful genomics-driven drug discovery using cross-population meta-analyses." @default.
- W4304698180 created "2022-10-12" @default.
- W4304698180 creator A5037133689 @default.
- W4304698180 creator A5038075363 @default.
- W4304698180 creator A5063293057 @default.
- W4304698180 creator A5065163086 @default.
- W4304698180 creator A5082159178 @default.
- W4304698180 date "2022-10-01" @default.
- W4304698180 modified "2023-09-30" @default.
- W4304698180 title "A practical guideline of genomics-driven drug discovery in the era of global biobank meta-analysis" @default.
- W4304698180 cites W1951878729 @default.
- W4304698180 cites W1989590412 @default.
- W4304698180 cites W1997362383 @default.
- W4304698180 cites W2014028908 @default.
- W4304698180 cites W2028828805 @default.
- W4304698180 cites W2032370326 @default.
- W4304698180 cites W2034537627 @default.
- W4304698180 cites W2051314902 @default.
- W4304698180 cites W2057545775 @default.
- W4304698180 cites W2060481026 @default.
- W4304698180 cites W2073836327 @default.
- W4304698180 cites W2118822739 @default.
- W4304698180 cites W2125972459 @default.
- W4304698180 cites W2163013660 @default.
- W4304698180 cites W2172557341 @default.
- W4304698180 cites W2204695023 @default.
- W4304698180 cites W2286390787 @default.
- W4304698180 cites W2296972078 @default.
- W4304698180 cites W2514363696 @default.
- W4304698180 cites W2530651071 @default.
- W4304698180 cites W2566116513 @default.
- W4304698180 cites W2566953609 @default.
- W4304698180 cites W2596179513 @default.
- W4304698180 cites W2604527271 @default.
- W4304698180 cites W2605261164 @default.
- W4304698180 cites W2612467560 @default.
- W4304698180 cites W2749491127 @default.
- W4304698180 cites W2761275051 @default.
- W4304698180 cites W2767891136 @default.
- W4304698180 cites W2770598799 @default.
- W4304698180 cites W2788601536 @default.
- W4304698180 cites W2791863121 @default.
- W4304698180 cites W2805712258 @default.
- W4304698180 cites W2805983714 @default.
- W4304698180 cites W2885870007 @default.
- W4304698180 cites W2886245587 @default.
- W4304698180 cites W2913953816 @default.
- W4304698180 cites W2921359953 @default.
- W4304698180 cites W2932671560 @default.
- W4304698180 cites W2934861239 @default.
- W4304698180 cites W2949475756 @default.
- W4304698180 cites W2950709928 @default.
- W4304698180 cites W2953945894 @default.
- W4304698180 cites W2969597311 @default.
- W4304698180 cites W2995245946 @default.
- W4304698180 cites W3042068575 @default.
- W4304698180 cites W3042131288 @default.
- W4304698180 cites W3083496521 @default.
- W4304698180 cites W3106143834 @default.
- W4304698180 cites W3128727642 @default.
- W4304698180 cites W3129840172 @default.
- W4304698180 cites W3131856571 @default.
- W4304698180 cites W3132221372 @default.
- W4304698180 cites W3135190477 @default.
- W4304698180 cites W3175801695 @default.
- W4304698180 cites W3184279863 @default.
- W4304698180 cites W3186384071 @default.
- W4304698180 cites W3197364483 @default.
- W4304698180 cites W3201934315 @default.
- W4304698180 cites W3202209876 @default.
- W4304698180 cites W3202212354 @default.
- W4304698180 cites W4304777503 @default.
- W4304698180 doi "https://doi.org/10.1016/j.xgen.2022.100190" @default.
- W4304698180 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36778001" @default.
- W4304698180 hasPublicationYear "2022" @default.
- W4304698180 type Work @default.
- W4304698180 citedByCount "7" @default.
- W4304698180 countsByYear W43046981802022 @default.
- W4304698180 countsByYear W43046981802023 @default.
- W4304698180 crossrefType "journal-article" @default.
- W4304698180 hasAuthorship W4304698180A5037133689 @default.
- W4304698180 hasAuthorship W4304698180A5038075363 @default.
- W4304698180 hasAuthorship W4304698180A5063293057 @default.
- W4304698180 hasAuthorship W4304698180A5065163086 @default.
- W4304698180 hasAuthorship W4304698180A5082159178 @default.
- W4304698180 hasBestOaLocation W43046981801 @default.
- W4304698180 hasConcept C104317684 @default.
- W4304698180 hasConcept C116567970 @default.
- W4304698180 hasConcept C141231307 @default.
- W4304698180 hasConcept C142724271 @default.
- W4304698180 hasConcept C163763905 @default.
- W4304698180 hasConcept C189206191 @default.
- W4304698180 hasConcept C2908647359 @default.
- W4304698180 hasConcept C54355233 @default.
- W4304698180 hasConcept C60644358 @default.
- W4304698180 hasConcept C70721500 @default.
- W4304698180 hasConcept C71924100 @default.
- W4304698180 hasConcept C74187038 @default.