Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304701325> ?p ?o ?g. }
- W4304701325 endingPage "15249" @default.
- W4304701325 startingPage "15237" @default.
- W4304701325 abstract "Lanthanides have been proved to be unprecedented when it comes to organized nanoporous materials with high coordination environment. In the quest to enhance the applications for energy-storage materials, three lanthanide-based metal–organic frameworks (MOFs) have been synthesized by facile hydrothermal conditions using 5-nitroisophthalic acid (H2L) as a ligand, namely, Ce–H2L, Sm–H2L, and Eu–H2L. These nanoporous MOFs consist of nine coordination sites around the lanthanide metal ion giving rise to distorted monocapped square antiprism geometry and 3D crystal structures. The electrochemical measurements demonstrate that charge storage in these MOFs occurs through faradaic redox reactions. The charge–discharge studies show that these nanoporous MOF materials deliver high specific capacity. Ce–H2L, Sm–H2L, and Eu–H2L deliver specific capacities of 625, 356, and 252 C g–1 (1389, 791, and 560 F g–1), respectively, at a current density of 1 A g–1. A symmetric supercapacitor Swagelok device has been fabricated using Ce–H2L as an electrode to further demonstrate the advantage of as-synthesized MOF. The developed symmetric supercapacitor gives a maximum specific energy of 13.6 Wh kg–1 and a maximum specific power of 7110 W kg–1 in the voltage window of 1.425 V. The energy storage trend in these nanoporous materials is Ce–H2L > Sm–H2L > Eu–H2L, which is further supported by the DFT calculations." @default.
- W4304701325 created "2022-10-12" @default.
- W4304701325 creator A5007347385 @default.
- W4304701325 creator A5026302588 @default.
- W4304701325 creator A5028471714 @default.
- W4304701325 creator A5029530708 @default.
- W4304701325 creator A5049112345 @default.
- W4304701325 creator A5077021258 @default.
- W4304701325 date "2022-10-12" @default.
- W4304701325 modified "2023-10-06" @default.
- W4304701325 title "Three-Dimensional Lanthanide-Based Nanoporous Metal–Organic Frameworks for High-Performance Supercapacitors" @default.
- W4304701325 cites W1973037563 @default.
- W4304701325 cites W1975555325 @default.
- W4304701325 cites W1975658206 @default.
- W4304701325 cites W1975804429 @default.
- W4304701325 cites W1999587584 @default.
- W4304701325 cites W2004432407 @default.
- W4304701325 cites W2017424682 @default.
- W4304701325 cites W2042795236 @default.
- W4304701325 cites W2060147908 @default.
- W4304701325 cites W2063788297 @default.
- W4304701325 cites W2068957902 @default.
- W4304701325 cites W2124850667 @default.
- W4304701325 cites W2149187137 @default.
- W4304701325 cites W2150673614 @default.
- W4304701325 cites W2256578749 @default.
- W4304701325 cites W2258661450 @default.
- W4304701325 cites W2316169933 @default.
- W4304701325 cites W2321957367 @default.
- W4304701325 cites W2336577679 @default.
- W4304701325 cites W2473036125 @default.
- W4304701325 cites W2489779765 @default.
- W4304701325 cites W2529321105 @default.
- W4304701325 cites W2554561750 @default.
- W4304701325 cites W2606059630 @default.
- W4304701325 cites W2732851221 @default.
- W4304701325 cites W2753377532 @default.
- W4304701325 cites W2781637369 @default.
- W4304701325 cites W2782912538 @default.
- W4304701325 cites W2800921688 @default.
- W4304701325 cites W2800990833 @default.
- W4304701325 cites W2825451560 @default.
- W4304701325 cites W2901656018 @default.
- W4304701325 cites W2912881553 @default.
- W4304701325 cites W2914972337 @default.
- W4304701325 cites W2917706373 @default.
- W4304701325 cites W2917796572 @default.
- W4304701325 cites W2917921311 @default.
- W4304701325 cites W2944682879 @default.
- W4304701325 cites W2949343803 @default.
- W4304701325 cites W2954836791 @default.
- W4304701325 cites W2963486925 @default.
- W4304701325 cites W2963819993 @default.
- W4304701325 cites W2966235433 @default.
- W4304701325 cites W2972103642 @default.
- W4304701325 cites W2975278999 @default.
- W4304701325 cites W2979681494 @default.
- W4304701325 cites W3016862093 @default.
- W4304701325 cites W3030181942 @default.
- W4304701325 cites W3034560907 @default.
- W4304701325 cites W3037663615 @default.
- W4304701325 cites W3037830571 @default.
- W4304701325 cites W3045898038 @default.
- W4304701325 cites W3047891908 @default.
- W4304701325 cites W3088579542 @default.
- W4304701325 cites W3089245442 @default.
- W4304701325 cites W3096451532 @default.
- W4304701325 cites W3101095095 @default.
- W4304701325 cites W3113663140 @default.
- W4304701325 cites W3127789105 @default.
- W4304701325 cites W3130817806 @default.
- W4304701325 cites W3134496366 @default.
- W4304701325 cites W3159182843 @default.
- W4304701325 cites W3178276505 @default.
- W4304701325 cites W3182973754 @default.
- W4304701325 cites W3196001422 @default.
- W4304701325 cites W3214263834 @default.
- W4304701325 cites W4210719150 @default.
- W4304701325 cites W4211171282 @default.
- W4304701325 cites W4281658303 @default.
- W4304701325 cites W4281777007 @default.
- W4304701325 cites W4284977757 @default.
- W4304701325 cites W4285042756 @default.
- W4304701325 doi "https://doi.org/10.1021/acsanm.2c03347" @default.
- W4304701325 hasPublicationYear "2022" @default.
- W4304701325 type Work @default.
- W4304701325 citedByCount "3" @default.
- W4304701325 countsByYear W43047013252022 @default.
- W4304701325 countsByYear W43047013252023 @default.
- W4304701325 crossrefType "journal-article" @default.
- W4304701325 hasAuthorship W4304701325A5007347385 @default.
- W4304701325 hasAuthorship W4304701325A5026302588 @default.
- W4304701325 hasAuthorship W4304701325A5028471714 @default.
- W4304701325 hasAuthorship W4304701325A5029530708 @default.
- W4304701325 hasAuthorship W4304701325A5049112345 @default.
- W4304701325 hasAuthorship W4304701325A5077021258 @default.
- W4304701325 hasConcept C121332964 @default.
- W4304701325 hasConcept C127413603 @default.