Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304776125> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4304776125 endingPage "12" @default.
- W4304776125 startingPage "1" @default.
- W4304776125 abstract "Collaborative learning is an emerging distributed learning paradigm, which enables multiple parties to jointly train a shared machine learning (ML) model without causing the disclosure of the raw data of each party. As one of the fundamental collaborative learning algorithms, privacy-preserving collaborative logistic regression has recently gained attention from industry and academia, which utilizes cryptographic techniques to securely train joint logistic regression models across data from multiple parties. However, existing schemes have high communication and computational overhead, lose the ability to deal with high-dimensional sparse samples, cut down the accuracy of the model, or exist the risk of leaking private information. To overcome these issues, considering vertically distributed data, we propose a privacy-preserving vertical collaborative logistic regression ( <math xmlns=http://www.w3.org/1998/Math/MathML id=M1> <msup> <mrow> <mi>P</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> </math> VCLR) based on approximate homomorphic encryption (HE), which enables two parties to jointly train a shared model without a trusted third-party coordinator. Our scheme utilizes batching method in approximate HE to encrypt multiple data into a single ciphertext and enable a parallel processing through single instruction multiple data (SIMD) manner. We evaluate our scheme by using three publicly available datasets, the experimental results indicate that our scheme outperforms existing schemes in terms of training time and model performance." @default.
- W4304776125 created "2022-10-13" @default.
- W4304776125 creator A5001668232 @default.
- W4304776125 creator A5024306203 @default.
- W4304776125 creator A5024789143 @default.
- W4304776125 creator A5060155268 @default.
- W4304776125 date "2022-10-12" @default.
- W4304776125 modified "2023-10-14" @default.
- W4304776125 title "Privacy-Preserving Vertical Collaborative Logistic Regression without Trusted Third-Party Coordinator" @default.
- W4304776125 cites W1873763122 @default.
- W4304776125 cites W2043460186 @default.
- W4304776125 cites W2141420453 @default.
- W4304776125 cites W2573908344 @default.
- W4304776125 cites W2896938420 @default.
- W4304776125 cites W2901631215 @default.
- W4304776125 cites W2912213068 @default.
- W4304776125 cites W3042654233 @default.
- W4304776125 cites W3097771571 @default.
- W4304776125 cites W3162493398 @default.
- W4304776125 cites W3173725123 @default.
- W4304776125 cites W3214755690 @default.
- W4304776125 cites W4206005368 @default.
- W4304776125 cites W4226263557 @default.
- W4304776125 doi "https://doi.org/10.1155/2022/5094830" @default.
- W4304776125 hasPublicationYear "2022" @default.
- W4304776125 type Work @default.
- W4304776125 citedByCount "1" @default.
- W4304776125 countsByYear W43047761252023 @default.
- W4304776125 crossrefType "journal-article" @default.
- W4304776125 hasAuthorship W4304776125A5001668232 @default.
- W4304776125 hasAuthorship W4304776125A5024306203 @default.
- W4304776125 hasAuthorship W4304776125A5024789143 @default.
- W4304776125 hasAuthorship W4304776125A5060155268 @default.
- W4304776125 hasBestOaLocation W43047761251 @default.
- W4304776125 hasConcept C111919701 @default.
- W4304776125 hasConcept C119857082 @default.
- W4304776125 hasConcept C124101348 @default.
- W4304776125 hasConcept C134306372 @default.
- W4304776125 hasConcept C148730421 @default.
- W4304776125 hasConcept C151956035 @default.
- W4304776125 hasConcept C158338273 @default.
- W4304776125 hasConcept C178489894 @default.
- W4304776125 hasConcept C2779960059 @default.
- W4304776125 hasConcept C33923547 @default.
- W4304776125 hasConcept C38652104 @default.
- W4304776125 hasConcept C41008148 @default.
- W4304776125 hasConcept C77618280 @default.
- W4304776125 hasConcept C93974786 @default.
- W4304776125 hasConceptScore W4304776125C111919701 @default.
- W4304776125 hasConceptScore W4304776125C119857082 @default.
- W4304776125 hasConceptScore W4304776125C124101348 @default.
- W4304776125 hasConceptScore W4304776125C134306372 @default.
- W4304776125 hasConceptScore W4304776125C148730421 @default.
- W4304776125 hasConceptScore W4304776125C151956035 @default.
- W4304776125 hasConceptScore W4304776125C158338273 @default.
- W4304776125 hasConceptScore W4304776125C178489894 @default.
- W4304776125 hasConceptScore W4304776125C2779960059 @default.
- W4304776125 hasConceptScore W4304776125C33923547 @default.
- W4304776125 hasConceptScore W4304776125C38652104 @default.
- W4304776125 hasConceptScore W4304776125C41008148 @default.
- W4304776125 hasConceptScore W4304776125C77618280 @default.
- W4304776125 hasConceptScore W4304776125C93974786 @default.
- W4304776125 hasFunder F4320335777 @default.
- W4304776125 hasLocation W43047761251 @default.
- W4304776125 hasOpenAccess W4304776125 @default.
- W4304776125 hasPrimaryLocation W43047761251 @default.
- W4304776125 hasRelatedWork W2031533839 @default.
- W4304776125 hasRelatedWork W2037113620 @default.
- W4304776125 hasRelatedWork W2167384606 @default.
- W4304776125 hasRelatedWork W2595862006 @default.
- W4304776125 hasRelatedWork W2611822001 @default.
- W4304776125 hasRelatedWork W2765100738 @default.
- W4304776125 hasRelatedWork W3107811144 @default.
- W4304776125 hasRelatedWork W3181110568 @default.
- W4304776125 hasRelatedWork W4210650983 @default.
- W4304776125 hasRelatedWork W4313124477 @default.
- W4304776125 hasVolume "2022" @default.
- W4304776125 isParatext "false" @default.
- W4304776125 isRetracted "false" @default.
- W4304776125 workType "article" @default.