Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304783191> ?p ?o ?g. }
- W4304783191 abstract "Estimating the growth of pulmonary sub-solid nodules (SSNs) is crucial to the successful management of them during follow-up periods. The purpose of this study is to (1) investigate the measurement sensitivity of diameter, volume, and mass of SSNs for identifying growth and (2) seek to establish a deep learning-based model to predict the growth of SSNs.A total of 2,523 patients underwent at least 2-year examination records retrospectively collected with sub-solid nodules. A total of 2,358 patients with 3,120 SSNs from the NLST dataset were randomly divided into training and validation sets. Patients from the Yibicom Health Management Center and Guangdong Provincial People's Hospital were collected as an external test set (165 patients with 213 SSN). Trained models based on LUNA16 and Lndb19 datasets were employed to automatically obtain the diameter, volume, and mass of SSNs. Then, the increase rate in measurements between cancer and non-cancer groups was studied to evaluate the most appropriate way to identify growth-associated lung cancer. Further, according to the selected measurement, all SSNs were classified into two groups: growth and non-growth. Based on the data, the deep learning-based model (SiamModel) and radiomics model were developed and verified.The double time of diameter, volume, and mass were 711 vs. 963 days (P = 0.20), 552 vs. 621 days (P = 0.04) and 488 vs. 623 days (P< 0.001) in the cancer and non-cancer groups, respectively. Our proposed SiamModel performed better than the radiomics model in both the NLST validation set and external test set, with an AUC of 0.858 (95% CI 0.786-0.921) and 0.760 (95% CI 0.646-0.857) in the validation set and 0.862 (95% CI 0.789-0.927) and 0.681 (95% CI 0.506-0.841) in the external test set, respectively. Furthermore, our SiamModel could use the data from first-time CT to predict the growth of SSNs, with an AUC of 0.855 (95% CI 0.793-0.908) in the NLST validation set and 0.821 (95% CI 0.725-0.904) in the external test set.Mass increase rate can reflect more sensitively the growth of SSNs associated with lung cancer than diameter and volume increase rates. A deep learning-based model has a great potential to predict the growth of SSNs." @default.
- W4304783191 created "2022-10-13" @default.
- W4304783191 creator A5001783065 @default.
- W4304783191 creator A5004598929 @default.
- W4304783191 creator A5009326556 @default.
- W4304783191 creator A5011489796 @default.
- W4304783191 creator A5014800253 @default.
- W4304783191 creator A5015704749 @default.
- W4304783191 creator A5024768422 @default.
- W4304783191 creator A5025021168 @default.
- W4304783191 creator A5029695887 @default.
- W4304783191 creator A5043928765 @default.
- W4304783191 creator A5056694430 @default.
- W4304783191 creator A5056759536 @default.
- W4304783191 creator A5061715142 @default.
- W4304783191 creator A5072813027 @default.
- W4304783191 creator A5082411167 @default.
- W4304783191 creator A5089056627 @default.
- W4304783191 creator A5089441952 @default.
- W4304783191 creator A5090866405 @default.
- W4304783191 date "2022-10-12" @default.
- W4304783191 modified "2023-09-27" @default.
- W4304783191 title "Deep learning-based growth prediction for sub-solid pulmonary nodules on CT images" @default.
- W4304783191 cites W130099911 @default.
- W4304783191 cites W1938255733 @default.
- W4304783191 cites W2046189285 @default.
- W4304783191 cites W2054569222 @default.
- W4304783191 cites W2102007193 @default.
- W4304783191 cites W2114374668 @default.
- W4304783191 cites W2128739912 @default.
- W4304783191 cites W2135046866 @default.
- W4304783191 cites W2147757711 @default.
- W4304783191 cites W2584017349 @default.
- W4304783191 cites W2655047037 @default.
- W4304783191 cites W2763355946 @default.
- W4304783191 cites W2902712067 @default.
- W4304783191 cites W2911605224 @default.
- W4304783191 cites W2946185430 @default.
- W4304783191 cites W2953136889 @default.
- W4304783191 cites W2980626014 @default.
- W4304783191 cites W3003415550 @default.
- W4304783191 cites W3013260952 @default.
- W4304783191 cites W3020045953 @default.
- W4304783191 cites W3022901647 @default.
- W4304783191 cites W3110436553 @default.
- W4304783191 cites W3128646645 @default.
- W4304783191 cites W3133325202 @default.
- W4304783191 cites W3153575186 @default.
- W4304783191 cites W4210352025 @default.
- W4304783191 cites W4213337185 @default.
- W4304783191 cites W4214718243 @default.
- W4304783191 cites W4223612657 @default.
- W4304783191 cites W4224316008 @default.
- W4304783191 cites W4229034731 @default.
- W4304783191 cites W4281850275 @default.
- W4304783191 cites W4285097001 @default.
- W4304783191 cites W4288021777 @default.
- W4304783191 doi "https://doi.org/10.3389/fonc.2022.1002953" @default.
- W4304783191 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36313666" @default.
- W4304783191 hasPublicationYear "2022" @default.
- W4304783191 type Work @default.
- W4304783191 citedByCount "2" @default.
- W4304783191 countsByYear W43047831912023 @default.
- W4304783191 crossrefType "journal-article" @default.
- W4304783191 hasAuthorship W4304783191A5001783065 @default.
- W4304783191 hasAuthorship W4304783191A5004598929 @default.
- W4304783191 hasAuthorship W4304783191A5009326556 @default.
- W4304783191 hasAuthorship W4304783191A5011489796 @default.
- W4304783191 hasAuthorship W4304783191A5014800253 @default.
- W4304783191 hasAuthorship W4304783191A5015704749 @default.
- W4304783191 hasAuthorship W4304783191A5024768422 @default.
- W4304783191 hasAuthorship W4304783191A5025021168 @default.
- W4304783191 hasAuthorship W4304783191A5029695887 @default.
- W4304783191 hasAuthorship W4304783191A5043928765 @default.
- W4304783191 hasAuthorship W4304783191A5056694430 @default.
- W4304783191 hasAuthorship W4304783191A5056759536 @default.
- W4304783191 hasAuthorship W4304783191A5061715142 @default.
- W4304783191 hasAuthorship W4304783191A5072813027 @default.
- W4304783191 hasAuthorship W4304783191A5082411167 @default.
- W4304783191 hasAuthorship W4304783191A5089056627 @default.
- W4304783191 hasAuthorship W4304783191A5089441952 @default.
- W4304783191 hasAuthorship W4304783191A5090866405 @default.
- W4304783191 hasBestOaLocation W43047831911 @default.
- W4304783191 hasConcept C108583219 @default.
- W4304783191 hasConcept C121608353 @default.
- W4304783191 hasConcept C126322002 @default.
- W4304783191 hasConcept C126838900 @default.
- W4304783191 hasConcept C154945302 @default.
- W4304783191 hasConcept C2776256026 @default.
- W4304783191 hasConcept C2778559731 @default.
- W4304783191 hasConcept C2989005 @default.
- W4304783191 hasConcept C41008148 @default.
- W4304783191 hasConcept C544519230 @default.
- W4304783191 hasConcept C71924100 @default.
- W4304783191 hasConceptScore W4304783191C108583219 @default.
- W4304783191 hasConceptScore W4304783191C121608353 @default.
- W4304783191 hasConceptScore W4304783191C126322002 @default.
- W4304783191 hasConceptScore W4304783191C126838900 @default.
- W4304783191 hasConceptScore W4304783191C154945302 @default.
- W4304783191 hasConceptScore W4304783191C2776256026 @default.