Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304804745> ?p ?o ?g. }
- W4304804745 endingPage "132" @default.
- W4304804745 startingPage "101" @default.
- W4304804745 abstract "Machine learning (ML) has recently gained momentum as a method for measurement in strategy research. Yet, little guidance exists regarding how to appropriately apply the method for this purpose in our discipline. We address this by offering a guide to the application of ML in strategy research, with a particular emphasis on data handling practices that should improve our ability to accurately measure our constructs of interest using ML techniques. We offer a brief overview of ML methodologies that can be used for measurement before describing key challenges that exist when applying those methods for this purpose in strategy research (i.e., sample sizes, data noise, and construct complexity). We then outline a theory-driven approach to help scholars overcome these challenges and improve data handling and the subsequent application of ML techniques in strategy research. We demonstrate the efficacy of our approach by applying it to create a linguistic measure of CEOs' motivational needs in a sample of S&P 500 firms. We conclude by describing steps scholars can take after creating ML-based measures to continue to improve the application of ML in strategy research." @default.
- W4304804745 created "2022-10-13" @default.
- W4304804745 creator A5012983243 @default.
- W4304804745 creator A5026684314 @default.
- W4304804745 creator A5075392857 @default.
- W4304804745 date "2023-01-18" @default.
- W4304804745 modified "2023-09-26" @default.
- W4304804745 title "Garbage in, Garbage out: A Theory-Driven Approach to Improve Data Handling in Supervised Machine Learning" @default.
- W4304804745 cites W1529672735 @default.
- W4304804745 cites W1890780603 @default.
- W4304804745 cites W1903437204 @default.
- W4304804745 cites W1972314549 @default.
- W4304804745 cites W1977775666 @default.
- W4304804745 cites W1987177976 @default.
- W4304804745 cites W1992604259 @default.
- W4304804745 cites W1995341919 @default.
- W4304804745 cites W2000014323 @default.
- W4304804745 cites W2012070465 @default.
- W4304804745 cites W2012450834 @default.
- W4304804745 cites W2015046142 @default.
- W4304804745 cites W2016168362 @default.
- W4304804745 cites W2022947185 @default.
- W4304804745 cites W2023161323 @default.
- W4304804745 cites W2040198418 @default.
- W4304804745 cites W2048150867 @default.
- W4304804745 cites W2068901713 @default.
- W4304804745 cites W2079243136 @default.
- W4304804745 cites W2082988498 @default.
- W4304804745 cites W2085831731 @default.
- W4304804745 cites W2087262651 @default.
- W4304804745 cites W2089548953 @default.
- W4304804745 cites W2099620639 @default.
- W4304804745 cites W2100772444 @default.
- W4304804745 cites W2105638190 @default.
- W4304804745 cites W2112532472 @default.
- W4304804745 cites W2118070418 @default.
- W4304804745 cites W2124072870 @default.
- W4304804745 cites W2128517183 @default.
- W4304804745 cites W2136487516 @default.
- W4304804745 cites W2137854746 @default.
- W4304804745 cites W2138067662 @default.
- W4304804745 cites W2140144518 @default.
- W4304804745 cites W2142784850 @default.
- W4304804745 cites W2153266959 @default.
- W4304804745 cites W2155326083 @default.
- W4304804745 cites W2161336914 @default.
- W4304804745 cites W2161813612 @default.
- W4304804745 cites W2163946301 @default.
- W4304804745 cites W2251575556 @default.
- W4304804745 cites W2289693677 @default.
- W4304804745 cites W2296760925 @default.
- W4304804745 cites W2313384944 @default.
- W4304804745 cites W2318752590 @default.
- W4304804745 cites W2330114020 @default.
- W4304804745 cites W2358897293 @default.
- W4304804745 cites W2515790847 @default.
- W4304804745 cites W2565516711 @default.
- W4304804745 cites W2576683119 @default.
- W4304804745 cites W2601780063 @default.
- W4304804745 cites W2618376294 @default.
- W4304804745 cites W2786084466 @default.
- W4304804745 cites W2792919287 @default.
- W4304804745 cites W2911964244 @default.
- W4304804745 cites W2942649361 @default.
- W4304804745 cites W2943121181 @default.
- W4304804745 cites W2945976633 @default.
- W4304804745 cites W2963802982 @default.
- W4304804745 cites W2971210088 @default.
- W4304804745 cites W3012084207 @default.
- W4304804745 cites W3102531321 @default.
- W4304804745 cites W3121736426 @default.
- W4304804745 cites W3122054577 @default.
- W4304804745 cites W3134630415 @default.
- W4304804745 cites W3173745563 @default.
- W4304804745 cites W4230603309 @default.
- W4304804745 cites W4232515367 @default.
- W4304804745 cites W4232929530 @default.
- W4304804745 cites W4247037233 @default.
- W4304804745 cites W4253728981 @default.
- W4304804745 cites W4254952533 @default.
- W4304804745 doi "https://doi.org/10.1108/s1479-838720220000014006" @default.
- W4304804745 hasPublicationYear "2023" @default.
- W4304804745 type Work @default.
- W4304804745 citedByCount "0" @default.
- W4304804745 crossrefType "book-chapter" @default.
- W4304804745 hasAuthorship W4304804745A5012983243 @default.
- W4304804745 hasAuthorship W4304804745A5026684314 @default.
- W4304804745 hasAuthorship W4304804745A5075392857 @default.
- W4304804745 hasConcept C115961682 @default.
- W4304804745 hasConcept C119857082 @default.
- W4304804745 hasConcept C124101348 @default.
- W4304804745 hasConcept C127413603 @default.
- W4304804745 hasConcept C154945302 @default.
- W4304804745 hasConcept C185592680 @default.
- W4304804745 hasConcept C198531522 @default.
- W4304804745 hasConcept C199360897 @default.
- W4304804745 hasConcept C2522767166 @default.
- W4304804745 hasConcept C26517878 @default.