Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304806952> ?p ?o ?g. }
- W4304806952 endingPage "1706" @default.
- W4304806952 startingPage "1706" @default.
- W4304806952 abstract "The rise of personalized medicine and its remarkable advancements have revealed new requirements for the availability of appropriate medical decision-making models. Computer science is an area that plays an essential role in the field of personalized medicine, where one of the goals is to provide algorithms and tools to extrapolate knowledge and improve the decision-support process. The minimum clinically important difference (MCID) is the smallest change in PROM scores that patients perceive as meaningful. Treatment that does not achieve the minimum level of improvement is considered inappropriate as well as a potential waste of resources. Using the MCID threshold to identify patients who fail to achieve the minimum change in PROM that results in a meaningful outcome may aid in pre-surgical shared decision-making. The decision tree algorithm is a method for extracting valuable information and providing further meaningful information to the domain expert that supports the decision-making. In the present study, different tools based on machine learning were developed. On the one hand, we compared three XGBoost models to predict the non-achievement of the MCID at six months post-operation in the SF-12 physical score. The prediction score threshold was set to 0.75 to provide three decision-making areas on the basis of the high confidence (HC) intervals; the minority class was re-balanced by weighting the positive class to penalize the loss function (XGBoost cost-sensitive), oversampling the minority class (XGBoost with SMOTE), and re-sampling the negative class (XGBoost with undersampling). On the other hand, we modeled the data through a decision tree (assessment tree), based on different complexity levels, to identify the hidden pattern and to provide a new way to understand possible relationships between the gathered features and the several outcomes. The results showed that all the proposed models were effective as binary classifiers, as they showed moderate predictive performance both regarding the minority or positive class (i.e., our targeted patients, those who will not benefit from surgery) and the negative class. The decision tree visualization can be exploited during the patient assessment status to better understand if those patients will benefit or not from the medical intervention. Both of these tools can come in handy for increasing knowledge about the patient's psychophysical state and for creating an increasingly specialized assessment of the individual patient." @default.
- W4304806952 created "2022-10-13" @default.
- W4304806952 creator A5023835476 @default.
- W4304806952 creator A5023849668 @default.
- W4304806952 creator A5044965940 @default.
- W4304806952 creator A5059620963 @default.
- W4304806952 date "2022-10-12" @default.
- W4304806952 modified "2023-10-16" @default.
- W4304806952 title "Application of Machine Learning to Improve Appropriateness of Treatment in an Orthopaedic Setting of Personalized Medicine" @default.
- W4304806952 cites W1648106571 @default.
- W4304806952 cites W1986147394 @default.
- W4304806952 cites W1992223383 @default.
- W4304806952 cites W2008973833 @default.
- W4304806952 cites W2088893559 @default.
- W4304806952 cites W2130851130 @default.
- W4304806952 cites W2131427446 @default.
- W4304806952 cites W2148143831 @default.
- W4304806952 cites W2158779444 @default.
- W4304806952 cites W2159071801 @default.
- W4304806952 cites W2188878301 @default.
- W4304806952 cites W2371638596 @default.
- W4304806952 cites W2760551816 @default.
- W4304806952 cites W2779573120 @default.
- W4304806952 cites W2900543659 @default.
- W4304806952 cites W2909890632 @default.
- W4304806952 cites W2929709830 @default.
- W4304806952 cites W2938673250 @default.
- W4304806952 cites W2944669133 @default.
- W4304806952 cites W2945283461 @default.
- W4304806952 cites W2946464972 @default.
- W4304806952 cites W2966361671 @default.
- W4304806952 cites W2966571940 @default.
- W4304806952 cites W2979845873 @default.
- W4304806952 cites W3000656672 @default.
- W4304806952 cites W3004152721 @default.
- W4304806952 cites W3012401909 @default.
- W4304806952 cites W3044481727 @default.
- W4304806952 cites W3048848678 @default.
- W4304806952 cites W3081125651 @default.
- W4304806952 cites W3094108931 @default.
- W4304806952 cites W3100970563 @default.
- W4304806952 cites W3102476541 @default.
- W4304806952 cites W3112714684 @default.
- W4304806952 cites W3117781502 @default.
- W4304806952 cites W3118604400 @default.
- W4304806952 cites W3119924121 @default.
- W4304806952 cites W3132622911 @default.
- W4304806952 cites W3135490782 @default.
- W4304806952 cites W3147411155 @default.
- W4304806952 cites W3161669023 @default.
- W4304806952 cites W3163863893 @default.
- W4304806952 cites W3165033671 @default.
- W4304806952 cites W3165052554 @default.
- W4304806952 cites W3179335035 @default.
- W4304806952 cites W3184761364 @default.
- W4304806952 cites W3188266647 @default.
- W4304806952 cites W4223557657 @default.
- W4304806952 cites W4225244047 @default.
- W4304806952 cites W4282548202 @default.
- W4304806952 cites W4290998579 @default.
- W4304806952 doi "https://doi.org/10.3390/jpm12101706" @default.
- W4304806952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36294845" @default.
- W4304806952 hasPublicationYear "2022" @default.
- W4304806952 type Work @default.
- W4304806952 citedByCount "3" @default.
- W4304806952 countsByYear W43048069522023 @default.
- W4304806952 crossrefType "journal-article" @default.
- W4304806952 hasAuthorship W4304806952A5023835476 @default.
- W4304806952 hasAuthorship W4304806952A5023849668 @default.
- W4304806952 hasAuthorship W4304806952A5044965940 @default.
- W4304806952 hasAuthorship W4304806952A5059620963 @default.
- W4304806952 hasBestOaLocation W43048069521 @default.
- W4304806952 hasConcept C111278954 @default.
- W4304806952 hasConcept C119857082 @default.
- W4304806952 hasConcept C124101348 @default.
- W4304806952 hasConcept C126838900 @default.
- W4304806952 hasConcept C136536468 @default.
- W4304806952 hasConcept C141071460 @default.
- W4304806952 hasConcept C154945302 @default.
- W4304806952 hasConcept C168563851 @default.
- W4304806952 hasConcept C183115368 @default.
- W4304806952 hasConcept C2777212361 @default.
- W4304806952 hasConcept C32220436 @default.
- W4304806952 hasConcept C41008148 @default.
- W4304806952 hasConcept C60644358 @default.
- W4304806952 hasConcept C71924100 @default.
- W4304806952 hasConcept C84525736 @default.
- W4304806952 hasConcept C86803240 @default.
- W4304806952 hasConceptScore W4304806952C111278954 @default.
- W4304806952 hasConceptScore W4304806952C119857082 @default.
- W4304806952 hasConceptScore W4304806952C124101348 @default.
- W4304806952 hasConceptScore W4304806952C126838900 @default.
- W4304806952 hasConceptScore W4304806952C136536468 @default.
- W4304806952 hasConceptScore W4304806952C141071460 @default.
- W4304806952 hasConceptScore W4304806952C154945302 @default.
- W4304806952 hasConceptScore W4304806952C168563851 @default.
- W4304806952 hasConceptScore W4304806952C183115368 @default.
- W4304806952 hasConceptScore W4304806952C2777212361 @default.