Matches in SemOpenAlex for { <https://semopenalex.org/work/W4304889746> ?p ?o ?g. }
- W4304889746 endingPage "59" @default.
- W4304889746 startingPage "51" @default.
- W4304889746 abstract "Diagnosis and classification of tumors is increasingly dependent on biomarkers. RNA expression profiling using next-generation sequencing provides reliable and reproducible information on the biology of cancer. This study investigated targeted transcriptome and artificial intelligence for differential diagnosis of hematologic and solid tumors. RNA samples from hematologic neoplasms (N = 2606), solid tumors (N = 2038), normal bone marrow (N = 782), and lymph node control (N = 24) were sequenced using next-generation sequencing using a targeted 1408-gene panel. Twenty subtypes of hematologic neoplasms and 24 subtypes of solid tumors were identified. Machine learning was used for diagnosis between two classes. Geometric mean naïve Bayesian classifier was used for differential diagnosis across 45 diagnostic entities with assigned rankings. Machine learning showed high accuracy in distinguishing between two diagnoses, with area under the curve varying between 1 and 0.841. Geometric mean naïve Bayesian algorithm was trained using 3045 samples and tested on 1415 samples, and showed correct first-choice diagnosis in 100%, 88%, 85%, 82%, 88%, 72%, and 72% of acute lymphoblastic leukemia, acute myeloid leukemia, diffuse large B-cell lymphoma, colorectal cancer, lung cancer, chronic lymphocytic leukemia, and follicular lymphoma cases, respectively. The data indicate that targeted transcriptome combined with artificial intelligence are highly useful for diagnosis and classification of various cancers. Mutation profiles and clinical information can improve these algorithms and minimize errors in diagnoses." @default.
- W4304889746 created "2022-10-13" @default.
- W4304889746 creator A5006561610 @default.
- W4304889746 creator A5012317340 @default.
- W4304889746 creator A5014994462 @default.
- W4304889746 creator A5020322190 @default.
- W4304889746 creator A5021774909 @default.
- W4304889746 creator A5023752321 @default.
- W4304889746 creator A5025036628 @default.
- W4304889746 creator A5025966452 @default.
- W4304889746 creator A5033124739 @default.
- W4304889746 creator A5033513950 @default.
- W4304889746 creator A5044371542 @default.
- W4304889746 creator A5051951796 @default.
- W4304889746 creator A5065125715 @default.
- W4304889746 creator A5067303243 @default.
- W4304889746 creator A5082808978 @default.
- W4304889746 creator A5089882481 @default.
- W4304889746 date "2023-01-01" @default.
- W4304889746 modified "2023-09-26" @default.
- W4304889746 title "Differential Diagnosis of Hematologic and Solid Tumors Using Targeted Transcriptome and Artificial Intelligence" @default.
- W4304889746 cites W1579675917 @default.
- W4304889746 cites W2034355012 @default.
- W4304889746 cites W2467112370 @default.
- W4304889746 cites W2562053847 @default.
- W4304889746 cites W2616119389 @default.
- W4304889746 cites W2744611525 @default.
- W4304889746 cites W2774841093 @default.
- W4304889746 cites W2794820058 @default.
- W4304889746 cites W2947379685 @default.
- W4304889746 cites W2955294253 @default.
- W4304889746 cites W3006733956 @default.
- W4304889746 cites W3048397540 @default.
- W4304889746 cites W3092142993 @default.
- W4304889746 cites W3093052985 @default.
- W4304889746 cites W3110500961 @default.
- W4304889746 cites W3200445016 @default.
- W4304889746 cites W4200109803 @default.
- W4304889746 cites W4220678174 @default.
- W4304889746 cites W4225529913 @default.
- W4304889746 doi "https://doi.org/10.1016/j.ajpath.2022.09.006" @default.
- W4304889746 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36243045" @default.
- W4304889746 hasPublicationYear "2023" @default.
- W4304889746 type Work @default.
- W4304889746 citedByCount "11" @default.
- W4304889746 countsByYear W43048897462015 @default.
- W4304889746 countsByYear W43048897462022 @default.
- W4304889746 countsByYear W43048897462023 @default.
- W4304889746 crossrefType "journal-article" @default.
- W4304889746 hasAuthorship W4304889746A5006561610 @default.
- W4304889746 hasAuthorship W4304889746A5012317340 @default.
- W4304889746 hasAuthorship W4304889746A5014994462 @default.
- W4304889746 hasAuthorship W4304889746A5020322190 @default.
- W4304889746 hasAuthorship W4304889746A5021774909 @default.
- W4304889746 hasAuthorship W4304889746A5023752321 @default.
- W4304889746 hasAuthorship W4304889746A5025036628 @default.
- W4304889746 hasAuthorship W4304889746A5025966452 @default.
- W4304889746 hasAuthorship W4304889746A5033124739 @default.
- W4304889746 hasAuthorship W4304889746A5033513950 @default.
- W4304889746 hasAuthorship W4304889746A5044371542 @default.
- W4304889746 hasAuthorship W4304889746A5051951796 @default.
- W4304889746 hasAuthorship W4304889746A5065125715 @default.
- W4304889746 hasAuthorship W4304889746A5067303243 @default.
- W4304889746 hasAuthorship W4304889746A5082808978 @default.
- W4304889746 hasAuthorship W4304889746A5089882481 @default.
- W4304889746 hasConcept C104317684 @default.
- W4304889746 hasConcept C121608353 @default.
- W4304889746 hasConcept C126322002 @default.
- W4304889746 hasConcept C142724271 @default.
- W4304889746 hasConcept C143998085 @default.
- W4304889746 hasConcept C150194340 @default.
- W4304889746 hasConcept C162317418 @default.
- W4304889746 hasConcept C18431079 @default.
- W4304889746 hasConcept C2778461978 @default.
- W4304889746 hasConcept C2778729363 @default.
- W4304889746 hasConcept C2779338263 @default.
- W4304889746 hasConcept C2780801072 @default.
- W4304889746 hasConcept C534262118 @default.
- W4304889746 hasConcept C55493867 @default.
- W4304889746 hasConcept C71924100 @default.
- W4304889746 hasConcept C86803240 @default.
- W4304889746 hasConceptScore W4304889746C104317684 @default.
- W4304889746 hasConceptScore W4304889746C121608353 @default.
- W4304889746 hasConceptScore W4304889746C126322002 @default.
- W4304889746 hasConceptScore W4304889746C142724271 @default.
- W4304889746 hasConceptScore W4304889746C143998085 @default.
- W4304889746 hasConceptScore W4304889746C150194340 @default.
- W4304889746 hasConceptScore W4304889746C162317418 @default.
- W4304889746 hasConceptScore W4304889746C18431079 @default.
- W4304889746 hasConceptScore W4304889746C2778461978 @default.
- W4304889746 hasConceptScore W4304889746C2778729363 @default.
- W4304889746 hasConceptScore W4304889746C2779338263 @default.
- W4304889746 hasConceptScore W4304889746C2780801072 @default.
- W4304889746 hasConceptScore W4304889746C534262118 @default.
- W4304889746 hasConceptScore W4304889746C55493867 @default.
- W4304889746 hasConceptScore W4304889746C71924100 @default.
- W4304889746 hasConceptScore W4304889746C86803240 @default.
- W4304889746 hasIssue "1" @default.