Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306149504> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4306149504 endingPage "10292" @default.
- W4306149504 startingPage "10292" @default.
- W4306149504 abstract "Modern review websites, namely Yelp and Amazon, permit the users to post online reviews for numerous businesses, services and products. Currently, online reviewing is an imperative task in the manipulation of shopping decisions produced by customers. These reviews afford consumers experience and information regarding the superiority of the product. The prevalent method of strengthening online review evolution is the performance of Sentiment Classification, which is an attractive domain in industrial and academic research. The review helps various domains, and it is problematic to collect interpreted training data. In this paper, an effectual Review Rating Prediction and Sentiment Classification was developed. Here, a Gated Recurrent Unit (GRU) was employed for the Sentiment Classification process, whereas a Hierarchical Attention Network (HAN) was applied for Review Rating Prediction. The significant features, such as statistical, SentiWordNet and classification features, were extracted for the Sentiment Classification and Review Rating Prediction process. Moreover, the GRU was trained by the designed TD-Spider Taylor ChOA approach, and the HAN was trained by the designed Jaya-TDO approach. The experimental results show that the proposed Jaya-TDO technique attained a better performance of 0.9425, 0.9654 and 0.9538, and that TD-Spider Taylor ChOA achieved 0.9524, 0.9698 and 0.9588 in terms of the precision, recall and F-measure." @default.
- W4306149504 created "2022-10-14" @default.
- W4306149504 creator A5003838960 @default.
- W4306149504 creator A5023931221 @default.
- W4306149504 creator A5026353590 @default.
- W4306149504 creator A5060963775 @default.
- W4306149504 creator A5062895972 @default.
- W4306149504 date "2022-10-13" @default.
- W4306149504 modified "2023-09-25" @default.
- W4306149504 title "TDO-Spider Taylor ChOA: An Optimized Deep-Learning-Based Sentiment Classification and Review Rating Prediction" @default.
- W4306149504 cites W1489522854 @default.
- W4306149504 cites W2026093368 @default.
- W4306149504 cites W2059724699 @default.
- W4306149504 cites W2126050191 @default.
- W4306149504 cites W2265846598 @default.
- W4306149504 cites W2563010554 @default.
- W4306149504 cites W2747680751 @default.
- W4306149504 cites W2773971852 @default.
- W4306149504 cites W2781487490 @default.
- W4306149504 cites W2975109141 @default.
- W4306149504 cites W2979437960 @default.
- W4306149504 cites W2982225079 @default.
- W4306149504 cites W3007040893 @default.
- W4306149504 cites W3009102234 @default.
- W4306149504 cites W3012561861 @default.
- W4306149504 cites W3020589325 @default.
- W4306149504 cites W3045625912 @default.
- W4306149504 cites W3081466465 @default.
- W4306149504 cites W3081987387 @default.
- W4306149504 cites W3092289160 @default.
- W4306149504 cites W3120025291 @default.
- W4306149504 cites W3127044632 @default.
- W4306149504 cites W3128535632 @default.
- W4306149504 cites W3158882950 @default.
- W4306149504 cites W3191509948 @default.
- W4306149504 cites W3194475041 @default.
- W4306149504 cites W4213364920 @default.
- W4306149504 cites W4220671871 @default.
- W4306149504 doi "https://doi.org/10.3390/app122010292" @default.
- W4306149504 hasPublicationYear "2022" @default.
- W4306149504 type Work @default.
- W4306149504 citedByCount "0" @default.
- W4306149504 crossrefType "journal-article" @default.
- W4306149504 hasAuthorship W4306149504A5003838960 @default.
- W4306149504 hasAuthorship W4306149504A5023931221 @default.
- W4306149504 hasAuthorship W4306149504A5026353590 @default.
- W4306149504 hasAuthorship W4306149504A5060963775 @default.
- W4306149504 hasAuthorship W4306149504A5062895972 @default.
- W4306149504 hasBestOaLocation W43061495041 @default.
- W4306149504 hasConcept C111919701 @default.
- W4306149504 hasConcept C119857082 @default.
- W4306149504 hasConcept C124101348 @default.
- W4306149504 hasConcept C154945302 @default.
- W4306149504 hasConcept C2524010 @default.
- W4306149504 hasConcept C33923547 @default.
- W4306149504 hasConcept C41008148 @default.
- W4306149504 hasConcept C66402592 @default.
- W4306149504 hasConcept C90673727 @default.
- W4306149504 hasConcept C98045186 @default.
- W4306149504 hasConceptScore W4306149504C111919701 @default.
- W4306149504 hasConceptScore W4306149504C119857082 @default.
- W4306149504 hasConceptScore W4306149504C124101348 @default.
- W4306149504 hasConceptScore W4306149504C154945302 @default.
- W4306149504 hasConceptScore W4306149504C2524010 @default.
- W4306149504 hasConceptScore W4306149504C33923547 @default.
- W4306149504 hasConceptScore W4306149504C41008148 @default.
- W4306149504 hasConceptScore W4306149504C66402592 @default.
- W4306149504 hasConceptScore W4306149504C90673727 @default.
- W4306149504 hasConceptScore W4306149504C98045186 @default.
- W4306149504 hasIssue "20" @default.
- W4306149504 hasLocation W43061495041 @default.
- W4306149504 hasOpenAccess W4306149504 @default.
- W4306149504 hasPrimaryLocation W43061495041 @default.
- W4306149504 hasRelatedWork W2024691726 @default.
- W4306149504 hasRelatedWork W2326619756 @default.
- W4306149504 hasRelatedWork W2909085234 @default.
- W4306149504 hasRelatedWork W2961085424 @default.
- W4306149504 hasRelatedWork W3192794374 @default.
- W4306149504 hasRelatedWork W4286629047 @default.
- W4306149504 hasRelatedWork W4306321456 @default.
- W4306149504 hasRelatedWork W4306674287 @default.
- W4306149504 hasRelatedWork W4362613237 @default.
- W4306149504 hasRelatedWork W4224009465 @default.
- W4306149504 hasVolume "12" @default.
- W4306149504 isParatext "false" @default.
- W4306149504 isRetracted "false" @default.
- W4306149504 workType "article" @default.