Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306149605> ?p ?o ?g. }
- W4306149605 endingPage "10321" @default.
- W4306149605 startingPage "10321" @default.
- W4306149605 abstract "Code smells are the result of not following software engineering principles during software development, especially in the design and coding phase. It leads to low maintainability. To evaluate the quality of software and its maintainability, code smell detection can be helpful. Many machine learning algorithms are being used to detect code smells. In this study, we applied five ensemble machine learning and two deep learning algorithms to detect code smells. Four code smell datasets were analyzed: the Data class, the God class, the Feature-envy, and the Long-method datasets. In previous works, machine learning and stacking ensemble learning algorithms were applied to this dataset and the results found were acceptable, but there is scope of improvement. A class balancing technique (SMOTE) was applied to handle the class imbalance problem in the datasets. The Chi-square feature extraction technique was applied to select the more relevant features in each dataset. All five algorithms obtained the highest accuracy—100% for the Long-method dataset with the different selected sets of metrics, and the poorest accuracy, 91.45%, was achieved by the Max voting method for the Feature-envy dataset for the selected twelve sets of metrics." @default.
- W4306149605 created "2022-10-14" @default.
- W4306149605 creator A5013584581 @default.
- W4306149605 creator A5027987269 @default.
- W4306149605 creator A5029915466 @default.
- W4306149605 creator A5068019959 @default.
- W4306149605 date "2022-10-13" @default.
- W4306149605 modified "2023-10-10" @default.
- W4306149605 title "Code Smell Detection Using Ensemble Machine Learning Algorithms" @default.
- W4306149605 cites W1847720358 @default.
- W4306149605 cites W1860757347 @default.
- W4306149605 cites W2008593255 @default.
- W4306149605 cites W2014418158 @default.
- W4306149605 cites W2019386815 @default.
- W4306149605 cites W2043585054 @default.
- W4306149605 cites W2045749853 @default.
- W4306149605 cites W2064873664 @default.
- W4306149605 cites W2071983648 @default.
- W4306149605 cites W2113867035 @default.
- W4306149605 cites W2338541268 @default.
- W4306149605 cites W2608628736 @default.
- W4306149605 cites W2796404405 @default.
- W4306149605 cites W2898203964 @default.
- W4306149605 cites W2899441391 @default.
- W4306149605 cites W2945710970 @default.
- W4306149605 cites W2954327103 @default.
- W4306149605 cites W2972407267 @default.
- W4306149605 cites W2972835717 @default.
- W4306149605 cites W3014553393 @default.
- W4306149605 cites W3089663901 @default.
- W4306149605 cites W3112073754 @default.
- W4306149605 cites W3119003027 @default.
- W4306149605 cites W3134714752 @default.
- W4306149605 cites W3140823317 @default.
- W4306149605 cites W3140854437 @default.
- W4306149605 cites W3152613376 @default.
- W4306149605 cites W3165068894 @default.
- W4306149605 cites W3170550652 @default.
- W4306149605 cites W3195213890 @default.
- W4306149605 cites W3217782598 @default.
- W4306149605 cites W4205117944 @default.
- W4306149605 cites W4210645549 @default.
- W4306149605 cites W4285231209 @default.
- W4306149605 cites W649920412 @default.
- W4306149605 doi "https://doi.org/10.3390/app122010321" @default.
- W4306149605 hasPublicationYear "2022" @default.
- W4306149605 type Work @default.
- W4306149605 citedByCount "7" @default.
- W4306149605 countsByYear W43061496052022 @default.
- W4306149605 countsByYear W43061496052023 @default.
- W4306149605 crossrefType "journal-article" @default.
- W4306149605 hasAuthorship W4306149605A5013584581 @default.
- W4306149605 hasAuthorship W4306149605A5027987269 @default.
- W4306149605 hasAuthorship W4306149605A5029915466 @default.
- W4306149605 hasAuthorship W4306149605A5068019959 @default.
- W4306149605 hasBestOaLocation W43061496051 @default.
- W4306149605 hasConcept C11413529 @default.
- W4306149605 hasConcept C115903868 @default.
- W4306149605 hasConcept C117447612 @default.
- W4306149605 hasConcept C119857082 @default.
- W4306149605 hasConcept C124101348 @default.
- W4306149605 hasConcept C133237599 @default.
- W4306149605 hasConcept C154945302 @default.
- W4306149605 hasConcept C160713754 @default.
- W4306149605 hasConcept C199360897 @default.
- W4306149605 hasConcept C2777212361 @default.
- W4306149605 hasConcept C2777904410 @default.
- W4306149605 hasConcept C41008148 @default.
- W4306149605 hasConcept C45942800 @default.
- W4306149605 hasConcept C529173508 @default.
- W4306149605 hasConceptScore W4306149605C11413529 @default.
- W4306149605 hasConceptScore W4306149605C115903868 @default.
- W4306149605 hasConceptScore W4306149605C117447612 @default.
- W4306149605 hasConceptScore W4306149605C119857082 @default.
- W4306149605 hasConceptScore W4306149605C124101348 @default.
- W4306149605 hasConceptScore W4306149605C133237599 @default.
- W4306149605 hasConceptScore W4306149605C154945302 @default.
- W4306149605 hasConceptScore W4306149605C160713754 @default.
- W4306149605 hasConceptScore W4306149605C199360897 @default.
- W4306149605 hasConceptScore W4306149605C2777212361 @default.
- W4306149605 hasConceptScore W4306149605C2777904410 @default.
- W4306149605 hasConceptScore W4306149605C41008148 @default.
- W4306149605 hasConceptScore W4306149605C45942800 @default.
- W4306149605 hasConceptScore W4306149605C529173508 @default.
- W4306149605 hasIssue "20" @default.
- W4306149605 hasLocation W43061496051 @default.
- W4306149605 hasOpenAccess W4306149605 @default.
- W4306149605 hasPrimaryLocation W43061496051 @default.
- W4306149605 hasRelatedWork W2017709030 @default.
- W4306149605 hasRelatedWork W2108523483 @default.
- W4306149605 hasRelatedWork W3196568648 @default.
- W4306149605 hasRelatedWork W4285046548 @default.
- W4306149605 hasRelatedWork W4285741730 @default.
- W4306149605 hasRelatedWork W4313488044 @default.
- W4306149605 hasRelatedWork W4330336725 @default.
- W4306149605 hasRelatedWork W4378808481 @default.
- W4306149605 hasRelatedWork W4383098141 @default.
- W4306149605 hasRelatedWork W4385489206 @default.