Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306149771> ?p ?o ?g. }
- W4306149771 endingPage "7547" @default.
- W4306149771 startingPage "7547" @default.
- W4306149771 abstract "Random forest (RF) is one of the most popular machine learning (ML) models used for both classification and regression problems. As an ensemble model, it demonstrates high predictive accuracy and low variance, while being easy to learn and optimize. In this study, we use RF for short-term load forecasting (STLF), focusing on data representation and training modes. We consider seven methods of defining input patterns and three training modes: local, global and extended global. We also investigate key RF hyperparameters to learn about their optimal settings. The experimental part of the work demonstrates on four STLF problems that our model, in its optimal variant, can outperform both statistical and ML models, providing the most accurate forecasts." @default.
- W4306149771 created "2022-10-14" @default.
- W4306149771 creator A5038525019 @default.
- W4306149771 date "2022-10-13" @default.
- W4306149771 modified "2023-10-05" @default.
- W4306149771 title "A Comprehensive Study of Random Forest for Short-Term Load Forecasting" @default.
- W4306149771 cites W1518012322 @default.
- W4306149771 cites W2038594239 @default.
- W4306149771 cites W2113242816 @default.
- W4306149771 cites W2152271106 @default.
- W4306149771 cites W2174096604 @default.
- W4306149771 cites W2340247464 @default.
- W4306149771 cites W2515078008 @default.
- W4306149771 cites W2805797750 @default.
- W4306149771 cites W2911964244 @default.
- W4306149771 cites W2922523097 @default.
- W4306149771 cites W2941944264 @default.
- W4306149771 cites W2944006160 @default.
- W4306149771 cites W2963653111 @default.
- W4306149771 cites W2964017153 @default.
- W4306149771 cites W3011699874 @default.
- W4306149771 cites W3021318637 @default.
- W4306149771 cites W3047313329 @default.
- W4306149771 cites W3082548640 @default.
- W4306149771 cites W3090516321 @default.
- W4306149771 cites W3102476541 @default.
- W4306149771 cites W3113026311 @default.
- W4306149771 cites W3122242562 @default.
- W4306149771 cites W3135325266 @default.
- W4306149771 cites W3135351349 @default.
- W4306149771 cites W3137224754 @default.
- W4306149771 cites W3159580687 @default.
- W4306149771 cites W3169203486 @default.
- W4306149771 cites W3189064020 @default.
- W4306149771 cites W3206616300 @default.
- W4306149771 cites W4200619741 @default.
- W4306149771 cites W4206173445 @default.
- W4306149771 cites W4211194148 @default.
- W4306149771 cites W4212883601 @default.
- W4306149771 cites W4226322096 @default.
- W4306149771 cites W4280550128 @default.
- W4306149771 cites W4283028368 @default.
- W4306149771 cites W4312789021 @default.
- W4306149771 doi "https://doi.org/10.3390/en15207547" @default.
- W4306149771 hasPublicationYear "2022" @default.
- W4306149771 type Work @default.
- W4306149771 citedByCount "11" @default.
- W4306149771 countsByYear W43061497712022 @default.
- W4306149771 countsByYear W43061497712023 @default.
- W4306149771 crossrefType "journal-article" @default.
- W4306149771 hasAuthorship W4306149771A5038525019 @default.
- W4306149771 hasBestOaLocation W43061497711 @default.
- W4306149771 hasConcept C105795698 @default.
- W4306149771 hasConcept C119857082 @default.
- W4306149771 hasConcept C119898033 @default.
- W4306149771 hasConcept C121332964 @default.
- W4306149771 hasConcept C121955636 @default.
- W4306149771 hasConcept C144133560 @default.
- W4306149771 hasConcept C154945302 @default.
- W4306149771 hasConcept C169258074 @default.
- W4306149771 hasConcept C17744445 @default.
- W4306149771 hasConcept C196083921 @default.
- W4306149771 hasConcept C199539241 @default.
- W4306149771 hasConcept C26517878 @default.
- W4306149771 hasConcept C2776359362 @default.
- W4306149771 hasConcept C33923547 @default.
- W4306149771 hasConcept C38652104 @default.
- W4306149771 hasConcept C41008148 @default.
- W4306149771 hasConcept C45942800 @default.
- W4306149771 hasConcept C61797465 @default.
- W4306149771 hasConcept C62520636 @default.
- W4306149771 hasConcept C83546350 @default.
- W4306149771 hasConcept C8642999 @default.
- W4306149771 hasConcept C94625758 @default.
- W4306149771 hasConceptScore W4306149771C105795698 @default.
- W4306149771 hasConceptScore W4306149771C119857082 @default.
- W4306149771 hasConceptScore W4306149771C119898033 @default.
- W4306149771 hasConceptScore W4306149771C121332964 @default.
- W4306149771 hasConceptScore W4306149771C121955636 @default.
- W4306149771 hasConceptScore W4306149771C144133560 @default.
- W4306149771 hasConceptScore W4306149771C154945302 @default.
- W4306149771 hasConceptScore W4306149771C169258074 @default.
- W4306149771 hasConceptScore W4306149771C17744445 @default.
- W4306149771 hasConceptScore W4306149771C196083921 @default.
- W4306149771 hasConceptScore W4306149771C199539241 @default.
- W4306149771 hasConceptScore W4306149771C26517878 @default.
- W4306149771 hasConceptScore W4306149771C2776359362 @default.
- W4306149771 hasConceptScore W4306149771C33923547 @default.
- W4306149771 hasConceptScore W4306149771C38652104 @default.
- W4306149771 hasConceptScore W4306149771C41008148 @default.
- W4306149771 hasConceptScore W4306149771C45942800 @default.
- W4306149771 hasConceptScore W4306149771C61797465 @default.
- W4306149771 hasConceptScore W4306149771C62520636 @default.
- W4306149771 hasConceptScore W4306149771C83546350 @default.
- W4306149771 hasConceptScore W4306149771C8642999 @default.
- W4306149771 hasConceptScore W4306149771C94625758 @default.
- W4306149771 hasIssue "20" @default.
- W4306149771 hasLocation W43061497711 @default.