Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306149780> ?p ?o ?g. }
- W4306149780 endingPage "5003" @default.
- W4306149780 startingPage "5003" @default.
- W4306149780 abstract "Recently, convolutional neural network (CNN) models have been proposed to automate the assessment of breast density, breast cancer detection or risk stratification using single image modality. However, analysis of breast density using multiple mammographic types using clinical data has not been reported in the literature. In this study, we investigate pre-trained EfficientNetB0 deep learning (DL) models for automated assessment of breast density using multiple mammographic types with and without clinical information to improve reliability and versatility of reporting. 120,000 for-processing and for-presentation full-field digital mammograms (FFDM), digital breast tomosynthesis (DBT), and synthesized 2D images from 5032 women were retrospectively analyzed. Each participant underwent up to 3 screening examinations and completed a questionnaire at each screening encounter. Pre-trained EfficientNetB0 DL models with or without clinical history were optimized. The DL models were evaluated using BI-RADS (fatty, scattered fibroglandular densities, heterogeneously dense, or extremely dense) versus binary (non-dense or dense) density classification. Pre-trained EfficientNetB0 model performances were compared using inter-observer and commercial software (Volpara) variabilities. Results show that the average Fleiss’ Kappa score between-observers ranged from 0.31–0.50 and 0.55–0.69 for the BI-RADS and binary classifications, respectively, showing higher uncertainty among experts. Volpara-observer agreement was 0.33 and 0.54 for BI-RADS and binary classifications, respectively, showing fair to moderate agreement. However, our proposed pre-trained EfficientNetB0 DL models-observer agreement was 0.61–0.66 and 0.70–0.75 for BI-RADS and binary classifications, respectively, showing moderate to substantial agreement. Overall results show that the best breast density estimation was achieved using for-presentation FFDM and DBT images without added clinical information. Pre-trained EfficientNetB0 model can automatically assess breast density from any images modality type, with the best results obtained from for-presentation FFDM and DBT, which are the most common image archived in clinical practice." @default.
- W4306149780 created "2022-10-14" @default.
- W4306149780 creator A5003923687 @default.
- W4306149780 creator A5006102311 @default.
- W4306149780 creator A5029062096 @default.
- W4306149780 creator A5032872952 @default.
- W4306149780 creator A5036948731 @default.
- W4306149780 creator A5040156444 @default.
- W4306149780 creator A5040611434 @default.
- W4306149780 creator A5072582940 @default.
- W4306149780 creator A5081331298 @default.
- W4306149780 creator A5086990455 @default.
- W4306149780 date "2022-10-13" @default.
- W4306149780 modified "2023-09-27" @default.
- W4306149780 title "Deep Learning Models for Automated Assessment of Breast Density Using Multiple Mammographic Image Types" @default.
- W4306149780 cites W1989829869 @default.
- W4306149780 cites W2079966654 @default.
- W4306149780 cites W2167363078 @default.
- W4306149780 cites W2200751449 @default.
- W4306149780 cites W2617525350 @default.
- W4306149780 cites W2718180175 @default.
- W4306149780 cites W2786981970 @default.
- W4306149780 cites W2796827612 @default.
- W4306149780 cites W2807272377 @default.
- W4306149780 cites W2807915975 @default.
- W4306149780 cites W2887687623 @default.
- W4306149780 cites W2890514615 @default.
- W4306149780 cites W2897490102 @default.
- W4306149780 cites W2900053041 @default.
- W4306149780 cites W2918663279 @default.
- W4306149780 cites W2944016032 @default.
- W4306149780 cites W2962858109 @default.
- W4306149780 cites W2991497728 @default.
- W4306149780 cites W2993303538 @default.
- W4306149780 cites W2996116683 @default.
- W4306149780 cites W3037765194 @default.
- W4306149780 cites W3084362228 @default.
- W4306149780 cites W3098585799 @default.
- W4306149780 cites W3106458360 @default.
- W4306149780 cites W3128646645 @default.
- W4306149780 cites W3155189856 @default.
- W4306149780 doi "https://doi.org/10.3390/cancers14205003" @default.
- W4306149780 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36291787" @default.
- W4306149780 hasPublicationYear "2022" @default.
- W4306149780 type Work @default.
- W4306149780 citedByCount "1" @default.
- W4306149780 countsByYear W43061497802023 @default.
- W4306149780 crossrefType "journal-article" @default.
- W4306149780 hasAuthorship W4306149780A5003923687 @default.
- W4306149780 hasAuthorship W4306149780A5006102311 @default.
- W4306149780 hasAuthorship W4306149780A5029062096 @default.
- W4306149780 hasAuthorship W4306149780A5032872952 @default.
- W4306149780 hasAuthorship W4306149780A5036948731 @default.
- W4306149780 hasAuthorship W4306149780A5040156444 @default.
- W4306149780 hasAuthorship W4306149780A5040611434 @default.
- W4306149780 hasAuthorship W4306149780A5072582940 @default.
- W4306149780 hasAuthorship W4306149780A5081331298 @default.
- W4306149780 hasAuthorship W4306149780A5086990455 @default.
- W4306149780 hasBestOaLocation W43061497801 @default.
- W4306149780 hasConcept C119857082 @default.
- W4306149780 hasConcept C121608353 @default.
- W4306149780 hasConcept C12267149 @default.
- W4306149780 hasConcept C126322002 @default.
- W4306149780 hasConcept C153180895 @default.
- W4306149780 hasConcept C154945302 @default.
- W4306149780 hasConcept C163864269 @default.
- W4306149780 hasConcept C2524010 @default.
- W4306149780 hasConcept C2777432617 @default.
- W4306149780 hasConcept C2778724333 @default.
- W4306149780 hasConcept C2779098232 @default.
- W4306149780 hasConcept C2780472235 @default.
- W4306149780 hasConcept C2781281974 @default.
- W4306149780 hasConcept C2909182381 @default.
- W4306149780 hasConcept C2909213482 @default.
- W4306149780 hasConcept C3018951153 @default.
- W4306149780 hasConcept C33923547 @default.
- W4306149780 hasConcept C41008148 @default.
- W4306149780 hasConcept C530470458 @default.
- W4306149780 hasConcept C66905080 @default.
- W4306149780 hasConcept C71924100 @default.
- W4306149780 hasConcept C81363708 @default.
- W4306149780 hasConceptScore W4306149780C119857082 @default.
- W4306149780 hasConceptScore W4306149780C121608353 @default.
- W4306149780 hasConceptScore W4306149780C12267149 @default.
- W4306149780 hasConceptScore W4306149780C126322002 @default.
- W4306149780 hasConceptScore W4306149780C153180895 @default.
- W4306149780 hasConceptScore W4306149780C154945302 @default.
- W4306149780 hasConceptScore W4306149780C163864269 @default.
- W4306149780 hasConceptScore W4306149780C2524010 @default.
- W4306149780 hasConceptScore W4306149780C2777432617 @default.
- W4306149780 hasConceptScore W4306149780C2778724333 @default.
- W4306149780 hasConceptScore W4306149780C2779098232 @default.
- W4306149780 hasConceptScore W4306149780C2780472235 @default.
- W4306149780 hasConceptScore W4306149780C2781281974 @default.
- W4306149780 hasConceptScore W4306149780C2909182381 @default.
- W4306149780 hasConceptScore W4306149780C2909213482 @default.
- W4306149780 hasConceptScore W4306149780C3018951153 @default.
- W4306149780 hasConceptScore W4306149780C33923547 @default.