Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306149871> ?p ?o ?g. }
- W4306149871 endingPage "7564" @default.
- W4306149871 startingPage "7564" @default.
- W4306149871 abstract "One of the main problems in oil fields is the deposition of scale inside oil pipelines, which causes problems such as the reduction of the internal diameter of oil pipes, the need for more energy to transport oil products, and the waste of energy. For this purpose, the use of an accurate and reliable system for determining the amount of scale inside the pipes has always been one of the needs of the oil industry. In this research, a non-invasive, accurate, and reliable system is presented, which works based on the attenuation of gamma rays. A dual-energy gamma source (241Am and 133Ba radioisotopes), a sodium iodide detector, and a steel pipe are used in the structure of the detection system. The configuration of the detection structure is such that the dual-energy source and the detector are directly opposite each other and on both sides of the steel pipe. In the steel pipe, a stratified flow regime consisting of gas, water, and oil in different volume percentages was simulated using Monte Carlo N Particle (MCNP) code. Seven scale thicknesses between 0 and 3 cm were simulated inside the tube. After the end of the simulation process, the received signals were labeled and transferred to the frequency domain usage of fast Fourier transform (FFT). Frequency domain signals were processed, and four frequency characteristics were extracted from them. The multilayer perceptron (MLP) neural network was used to obtain the relationship between the extracted frequency characteristics and the scale thickness. Frequency characteristics were defined as inputs and scale thickness in cm as the output of the neural network. The prediction of scale thickness with an RMSE of 0.13 and the use of only one detector in the structure of the detection system are among the advantages of this research." @default.
- W4306149871 created "2022-10-14" @default.
- W4306149871 creator A5000179526 @default.
- W4306149871 creator A5024079346 @default.
- W4306149871 creator A5066941401 @default.
- W4306149871 creator A5067294377 @default.
- W4306149871 creator A5075179385 @default.
- W4306149871 date "2022-10-13" @default.
- W4306149871 modified "2023-09-26" @default.
- W4306149871 title "Predicting Scale Thickness in Oil Pipelines Using Frequency Characteristics and an Artificial Neural Network in a Stratified Flow Regime" @default.
- W4306149871 cites W2026495637 @default.
- W4306149871 cites W2039681904 @default.
- W4306149871 cites W2188989244 @default.
- W4306149871 cites W2774867428 @default.
- W4306149871 cites W2789998565 @default.
- W4306149871 cites W2896913575 @default.
- W4306149871 cites W2917223093 @default.
- W4306149871 cites W2969748759 @default.
- W4306149871 cites W3001487077 @default.
- W4306149871 cites W3002727460 @default.
- W4306149871 cites W3010684816 @default.
- W4306149871 cites W3019216712 @default.
- W4306149871 cites W3035920777 @default.
- W4306149871 cites W3048628790 @default.
- W4306149871 cites W3089215229 @default.
- W4306149871 cites W3099395161 @default.
- W4306149871 cites W3121099466 @default.
- W4306149871 cites W3162767668 @default.
- W4306149871 cites W3165709518 @default.
- W4306149871 cites W3177321741 @default.
- W4306149871 cites W3197211141 @default.
- W4306149871 cites W3199114379 @default.
- W4306149871 cites W3208855740 @default.
- W4306149871 cites W4200486901 @default.
- W4306149871 cites W4210485550 @default.
- W4306149871 cites W4211254750 @default.
- W4306149871 cites W4214822798 @default.
- W4306149871 cites W4280490353 @default.
- W4306149871 cites W4291012192 @default.
- W4306149871 cites W4296280653 @default.
- W4306149871 cites W4297478353 @default.
- W4306149871 cites W4303982440 @default.
- W4306149871 doi "https://doi.org/10.3390/en15207564" @default.
- W4306149871 hasPublicationYear "2022" @default.
- W4306149871 type Work @default.
- W4306149871 citedByCount "0" @default.
- W4306149871 crossrefType "journal-article" @default.
- W4306149871 hasAuthorship W4306149871A5000179526 @default.
- W4306149871 hasAuthorship W4306149871A5024079346 @default.
- W4306149871 hasAuthorship W4306149871A5066941401 @default.
- W4306149871 hasAuthorship W4306149871A5067294377 @default.
- W4306149871 hasAuthorship W4306149871A5075179385 @default.
- W4306149871 hasBestOaLocation W43061498711 @default.
- W4306149871 hasConcept C105795698 @default.
- W4306149871 hasConcept C11413529 @default.
- W4306149871 hasConcept C119599485 @default.
- W4306149871 hasConcept C120665830 @default.
- W4306149871 hasConcept C121332964 @default.
- W4306149871 hasConcept C127413603 @default.
- W4306149871 hasConcept C175309249 @default.
- W4306149871 hasConcept C184652730 @default.
- W4306149871 hasConcept C186370098 @default.
- W4306149871 hasConcept C19118579 @default.
- W4306149871 hasConcept C192562407 @default.
- W4306149871 hasConcept C19499675 @default.
- W4306149871 hasConcept C24890656 @default.
- W4306149871 hasConcept C2779095084 @default.
- W4306149871 hasConcept C31972630 @default.
- W4306149871 hasConcept C33923547 @default.
- W4306149871 hasConcept C41008148 @default.
- W4306149871 hasConcept C62520636 @default.
- W4306149871 hasConcept C75172450 @default.
- W4306149871 hasConcept C78519656 @default.
- W4306149871 hasConcept C94915269 @default.
- W4306149871 hasConceptScore W4306149871C105795698 @default.
- W4306149871 hasConceptScore W4306149871C11413529 @default.
- W4306149871 hasConceptScore W4306149871C119599485 @default.
- W4306149871 hasConceptScore W4306149871C120665830 @default.
- W4306149871 hasConceptScore W4306149871C121332964 @default.
- W4306149871 hasConceptScore W4306149871C127413603 @default.
- W4306149871 hasConceptScore W4306149871C175309249 @default.
- W4306149871 hasConceptScore W4306149871C184652730 @default.
- W4306149871 hasConceptScore W4306149871C186370098 @default.
- W4306149871 hasConceptScore W4306149871C19118579 @default.
- W4306149871 hasConceptScore W4306149871C192562407 @default.
- W4306149871 hasConceptScore W4306149871C19499675 @default.
- W4306149871 hasConceptScore W4306149871C24890656 @default.
- W4306149871 hasConceptScore W4306149871C2779095084 @default.
- W4306149871 hasConceptScore W4306149871C31972630 @default.
- W4306149871 hasConceptScore W4306149871C33923547 @default.
- W4306149871 hasConceptScore W4306149871C41008148 @default.
- W4306149871 hasConceptScore W4306149871C62520636 @default.
- W4306149871 hasConceptScore W4306149871C75172450 @default.
- W4306149871 hasConceptScore W4306149871C78519656 @default.
- W4306149871 hasConceptScore W4306149871C94915269 @default.
- W4306149871 hasFunder F4320322733 @default.
- W4306149871 hasIssue "20" @default.
- W4306149871 hasLocation W43061498711 @default.