Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306152015> ?p ?o ?g. }
- W4306152015 endingPage "136" @default.
- W4306152015 startingPage "136" @default.
- W4306152015 abstract "The sustainable management of the water supply system requires methodologies to monitor, repair, or replace the aging infrastructure, but more importantly, it must be able to assess the condition of the networks and predict their behavior over time. Among other infrastructure systems, the water distribution network is one of the essential civil infrastructure systems; therefore, the effective maintenance and renewal of the infrastructure’s physical assets are essential. This article aims to determine pipe failure prediction to optimize pipe renewal time. This research methodology investigates the most appropriate parameters for predicting pipe failure in the optimization. In particular, the non-homogeneous Poisson process (NHPP) with the Markov chain Monte Carlo (MCMC) approach is presented for Bayesian inference, while maximum likelihood (ML) is applied for frequentist inference as a comparison method. It is concluded that the two estimations are relatively appropriate for predicting failures, but MCMC estimation is closer to the total observed data. Based on life-cycle cost (LCC) analysis, the MCMC estimation generates flatter LCC curves and lower LCC values than the ML estimation, which affects the decision making of optimum pipe renewal in water distribution networks." @default.
- W4306152015 created "2022-10-14" @default.
- W4306152015 creator A5057461064 @default.
- W4306152015 creator A5070949505 @default.
- W4306152015 creator A5079662367 @default.
- W4306152015 date "2022-10-13" @default.
- W4306152015 modified "2023-09-30" @default.
- W4306152015 title "A Bayesian Pipe Failure Prediction for Optimizing Pipe Renewal Time in Water Distribution Networks" @default.
- W4306152015 cites W1651686692 @default.
- W4306152015 cites W1966317316 @default.
- W4306152015 cites W1975739784 @default.
- W4306152015 cites W1987274234 @default.
- W4306152015 cites W1999940827 @default.
- W4306152015 cites W2004309641 @default.
- W4306152015 cites W2024275175 @default.
- W4306152015 cites W2067179304 @default.
- W4306152015 cites W2067559446 @default.
- W4306152015 cites W2080776187 @default.
- W4306152015 cites W2081523710 @default.
- W4306152015 cites W2084003016 @default.
- W4306152015 cites W2115932046 @default.
- W4306152015 cites W2120888696 @default.
- W4306152015 cites W2149414461 @default.
- W4306152015 cites W2165251040 @default.
- W4306152015 cites W2279127960 @default.
- W4306152015 cites W2334290708 @default.
- W4306152015 cites W2337255811 @default.
- W4306152015 cites W2343446127 @default.
- W4306152015 cites W2514707923 @default.
- W4306152015 cites W2527721540 @default.
- W4306152015 cites W2604351593 @default.
- W4306152015 cites W2737941061 @default.
- W4306152015 cites W2754989654 @default.
- W4306152015 cites W2790863358 @default.
- W4306152015 cites W2796701690 @default.
- W4306152015 cites W2807323750 @default.
- W4306152015 cites W2894834475 @default.
- W4306152015 cites W2903027428 @default.
- W4306152015 cites W2938406712 @default.
- W4306152015 cites W2965502148 @default.
- W4306152015 cites W2973198134 @default.
- W4306152015 cites W2987225788 @default.
- W4306152015 cites W2998335114 @default.
- W4306152015 cites W3009398507 @default.
- W4306152015 cites W3016830659 @default.
- W4306152015 cites W3017140157 @default.
- W4306152015 cites W3045542280 @default.
- W4306152015 cites W3093081604 @default.
- W4306152015 cites W3128882953 @default.
- W4306152015 cites W3129706035 @default.
- W4306152015 cites W3175779167 @default.
- W4306152015 cites W3207913058 @default.
- W4306152015 cites W4205530986 @default.
- W4306152015 cites W4221047002 @default.
- W4306152015 cites W769703914 @default.
- W4306152015 doi "https://doi.org/10.3390/infrastructures7100136" @default.
- W4306152015 hasPublicationYear "2022" @default.
- W4306152015 type Work @default.
- W4306152015 citedByCount "0" @default.
- W4306152015 crossrefType "journal-article" @default.
- W4306152015 hasAuthorship W4306152015A5057461064 @default.
- W4306152015 hasAuthorship W4306152015A5070949505 @default.
- W4306152015 hasAuthorship W4306152015A5079662367 @default.
- W4306152015 hasBestOaLocation W43061520151 @default.
- W4306152015 hasConcept C107673813 @default.
- W4306152015 hasConcept C111350023 @default.
- W4306152015 hasConcept C119857082 @default.
- W4306152015 hasConcept C127413603 @default.
- W4306152015 hasConcept C154945302 @default.
- W4306152015 hasConcept C160234255 @default.
- W4306152015 hasConcept C162376815 @default.
- W4306152015 hasConcept C200601418 @default.
- W4306152015 hasConcept C33724603 @default.
- W4306152015 hasConcept C41008148 @default.
- W4306152015 hasConceptScore W4306152015C107673813 @default.
- W4306152015 hasConceptScore W4306152015C111350023 @default.
- W4306152015 hasConceptScore W4306152015C119857082 @default.
- W4306152015 hasConceptScore W4306152015C127413603 @default.
- W4306152015 hasConceptScore W4306152015C154945302 @default.
- W4306152015 hasConceptScore W4306152015C160234255 @default.
- W4306152015 hasConceptScore W4306152015C162376815 @default.
- W4306152015 hasConceptScore W4306152015C200601418 @default.
- W4306152015 hasConceptScore W4306152015C33724603 @default.
- W4306152015 hasConceptScore W4306152015C41008148 @default.
- W4306152015 hasIssue "10" @default.
- W4306152015 hasLocation W43061520151 @default.
- W4306152015 hasLocation W43061520152 @default.
- W4306152015 hasOpenAccess W4306152015 @default.
- W4306152015 hasPrimaryLocation W43061520151 @default.
- W4306152015 hasRelatedWork W1707266330 @default.
- W4306152015 hasRelatedWork W1757859559 @default.
- W4306152015 hasRelatedWork W1860392020 @default.
- W4306152015 hasRelatedWork W2138081831 @default.
- W4306152015 hasRelatedWork W2604622397 @default.
- W4306152015 hasRelatedWork W3128521231 @default.
- W4306152015 hasRelatedWork W3163565648 @default.
- W4306152015 hasRelatedWork W4327989521 @default.
- W4306152015 hasRelatedWork W4381094773 @default.