Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306152259> ?p ?o ?g. }
- W4306152259 endingPage "3771" @default.
- W4306152259 startingPage "3771" @default.
- W4306152259 abstract "This paper aims at performing a comparative study to investigate the predictive capability of machine learning (ML) models used for estimating the compressive strength of self-compacting concrete (SCC). Seven prominent ML models, including deep neural network regression (DNNR), extreme gradient boosting machine (XGBoost), gradient boosting machine (GBM), adaptive boosting machine (AdaBoost), support vector regression (SVR), Levenberg–Marquardt artificial neural network (LM-ANN), and genetic programming (GP), are employed. Four experimental datasets, compiled in previous studies, are used to construct the ML-based methods. The models’ generalization capabilities are reliably evaluated by 20 independent runs. Experimental results point out the superiority of the DNNR, which has excelled other models in three out of four datasets. The XGBoost is the second-best model, which has gained the first rank in one dataset. The outcomes point out the great potential of the utilized ML approaches in modeling the compressive strength of SCC. In more details, the coefficient of determination (R2) surpasses 0.8 and the mean absolute percentage error (MAPE) is always below 15% for all datasets. The best results of R2 and MAPE are 0.93 and 7.2%, respectively." @default.
- W4306152259 created "2022-10-14" @default.
- W4306152259 creator A5038919661 @default.
- W4306152259 date "2022-10-13" @default.
- W4306152259 modified "2023-10-15" @default.
- W4306152259 title "Machine Learning-Based Estimation of the Compressive Strength of Self-Compacting Concrete: A Multi-Dataset Study" @default.
- W4306152259 cites W1542000206 @default.
- W4306152259 cites W1678356000 @default.
- W4306152259 cites W1963766302 @default.
- W4306152259 cites W1983735453 @default.
- W4306152259 cites W1988790447 @default.
- W4306152259 cites W2008221283 @default.
- W4306152259 cites W2020462804 @default.
- W4306152259 cites W2024898396 @default.
- W4306152259 cites W2038808304 @default.
- W4306152259 cites W2040492000 @default.
- W4306152259 cites W2045086406 @default.
- W4306152259 cites W2053164686 @default.
- W4306152259 cites W2070493638 @default.
- W4306152259 cites W2088024581 @default.
- W4306152259 cites W2155482699 @default.
- W4306152259 cites W2342051040 @default.
- W4306152259 cites W2342759052 @default.
- W4306152259 cites W2608710759 @default.
- W4306152259 cites W2769217008 @default.
- W4306152259 cites W2769912520 @default.
- W4306152259 cites W2789707187 @default.
- W4306152259 cites W2885314431 @default.
- W4306152259 cites W2902007253 @default.
- W4306152259 cites W2912213586 @default.
- W4306152259 cites W2917355953 @default.
- W4306152259 cites W2942137712 @default.
- W4306152259 cites W2943197862 @default.
- W4306152259 cites W2946128422 @default.
- W4306152259 cites W2964880934 @default.
- W4306152259 cites W2976353133 @default.
- W4306152259 cites W2980539464 @default.
- W4306152259 cites W3008504170 @default.
- W4306152259 cites W3015531097 @default.
- W4306152259 cites W3037548423 @default.
- W4306152259 cites W3038033549 @default.
- W4306152259 cites W3083230207 @default.
- W4306152259 cites W3092657053 @default.
- W4306152259 cites W3093895805 @default.
- W4306152259 cites W3102476541 @default.
- W4306152259 cites W3111140248 @default.
- W4306152259 cites W3121581137 @default.
- W4306152259 cites W3127007309 @default.
- W4306152259 cites W3132954667 @default.
- W4306152259 cites W3154415547 @default.
- W4306152259 cites W3196351205 @default.
- W4306152259 cites W4200350094 @default.
- W4306152259 cites W4212956447 @default.
- W4306152259 cites W4229072314 @default.
- W4306152259 cites W4280549681 @default.
- W4306152259 cites W4286717467 @default.
- W4306152259 cites W4291733890 @default.
- W4306152259 cites W773739209 @default.
- W4306152259 doi "https://doi.org/10.3390/math10203771" @default.
- W4306152259 hasPublicationYear "2022" @default.
- W4306152259 type Work @default.
- W4306152259 citedByCount "6" @default.
- W4306152259 countsByYear W43061522592023 @default.
- W4306152259 crossrefType "journal-article" @default.
- W4306152259 hasAuthorship W4306152259A5038919661 @default.
- W4306152259 hasBestOaLocation W43061522591 @default.
- W4306152259 hasConcept C119857082 @default.
- W4306152259 hasConcept C12267149 @default.
- W4306152259 hasConcept C141404830 @default.
- W4306152259 hasConcept C150217764 @default.
- W4306152259 hasConcept C153180895 @default.
- W4306152259 hasConcept C154945302 @default.
- W4306152259 hasConcept C159985019 @default.
- W4306152259 hasConcept C169258074 @default.
- W4306152259 hasConcept C192562407 @default.
- W4306152259 hasConcept C30407753 @default.
- W4306152259 hasConcept C41008148 @default.
- W4306152259 hasConcept C46686674 @default.
- W4306152259 hasConcept C50644808 @default.
- W4306152259 hasConcept C70153297 @default.
- W4306152259 hasConceptScore W4306152259C119857082 @default.
- W4306152259 hasConceptScore W4306152259C12267149 @default.
- W4306152259 hasConceptScore W4306152259C141404830 @default.
- W4306152259 hasConceptScore W4306152259C150217764 @default.
- W4306152259 hasConceptScore W4306152259C153180895 @default.
- W4306152259 hasConceptScore W4306152259C154945302 @default.
- W4306152259 hasConceptScore W4306152259C159985019 @default.
- W4306152259 hasConceptScore W4306152259C169258074 @default.
- W4306152259 hasConceptScore W4306152259C192562407 @default.
- W4306152259 hasConceptScore W4306152259C30407753 @default.
- W4306152259 hasConceptScore W4306152259C41008148 @default.
- W4306152259 hasConceptScore W4306152259C46686674 @default.
- W4306152259 hasConceptScore W4306152259C50644808 @default.
- W4306152259 hasConceptScore W4306152259C70153297 @default.
- W4306152259 hasIssue "20" @default.
- W4306152259 hasLocation W43061522591 @default.
- W4306152259 hasLocation W43061522592 @default.
- W4306152259 hasOpenAccess W4306152259 @default.