Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306153721> ?p ?o ?g. }
- W4306153721 endingPage "5118" @default.
- W4306153721 startingPage "5118" @default.
- W4306153721 abstract "Hyperspectral image classification methods based on deep learning have led to remarkable achievements in recent years. However, these methods with outstanding performance are also accompanied by problems such as excessive dependence on the number of samples, poor model generalization, and time-consuming training. Additionally, the previous patch-level feature extraction methods have some limitations, for instance, non-local information is difficult to model, etc. To solve these problems, this paper proposes an image-level feature extraction method with transfer learning. Firstly, we look at a hyperspectral image with hundreds of contiguous spectral bands from a sequential image perspective. We attempt to extract the global spectral variation information between adjacent spectral bands by using the optical flow estimation method. Secondly, we propose an innovative data adaptation strategy to bridge the gap between hyperspectral and video data, and transfer the optical flow estimation network pre-trained with video data to the hyperspectral feature extraction task for the first time. Thirdly, we utilize the traditional classifier to achieve classification. Simultaneously, a vote strategy combined with features at different scales is proposed to improve the classification accuracy further. Extensive, well-designed experiments on four scenes of public hyperspectral images demonstrate that the proposed method (Spe-TL) can obtain results that are competitive with advanced deep learning methods under various sample conditions, with better time effectiveness to adapt to new target tasks. Moreover, it can produce more detailed classification maps that subtly reflect the authentic distribution of ground objects in the original image." @default.
- W4306153721 created "2022-10-14" @default.
- W4306153721 creator A5039991862 @default.
- W4306153721 creator A5047270197 @default.
- W4306153721 creator A5056740310 @default.
- W4306153721 creator A5069652653 @default.
- W4306153721 creator A5074045214 @default.
- W4306153721 creator A5088242752 @default.
- W4306153721 date "2022-10-13" @default.
- W4306153721 modified "2023-10-01" @default.
- W4306153721 title "From Video to Hyperspectral: Hyperspectral Image-Level Feature Extraction with Transfer Learning" @default.
- W4306153721 cites W1521436688 @default.
- W4306153721 cites W1576462183 @default.
- W4306153721 cites W1921093919 @default.
- W4306153721 cites W1929856797 @default.
- W4306153721 cites W2043665634 @default.
- W4306153721 cites W2067869061 @default.
- W4306153721 cites W2076756823 @default.
- W4306153721 cites W2087263574 @default.
- W4306153721 cites W2090518410 @default.
- W4306153721 cites W2104269704 @default.
- W4306153721 cites W2113221323 @default.
- W4306153721 cites W2131747574 @default.
- W4306153721 cites W2147253850 @default.
- W4306153721 cites W2152057649 @default.
- W4306153721 cites W2161381512 @default.
- W4306153721 cites W2168874984 @default.
- W4306153721 cites W2294238219 @default.
- W4306153721 cites W2342652911 @default.
- W4306153721 cites W2500751094 @default.
- W4306153721 cites W2548527721 @default.
- W4306153721 cites W2560474170 @default.
- W4306153721 cites W2614326984 @default.
- W4306153721 cites W2764276316 @default.
- W4306153721 cites W2767651786 @default.
- W4306153721 cites W2768537477 @default.
- W4306153721 cites W2782517840 @default.
- W4306153721 cites W2791006446 @default.
- W4306153721 cites W2791118764 @default.
- W4306153721 cites W2822065499 @default.
- W4306153721 cites W2898204262 @default.
- W4306153721 cites W2898381489 @default.
- W4306153721 cites W2904698365 @default.
- W4306153721 cites W2940678725 @default.
- W4306153721 cites W2941387379 @default.
- W4306153721 cites W2950185713 @default.
- W4306153721 cites W2963782415 @default.
- W4306153721 cites W2964156315 @default.
- W4306153721 cites W2966751049 @default.
- W4306153721 cites W2967043539 @default.
- W4306153721 cites W2989871747 @default.
- W4306153721 cites W2991286101 @default.
- W4306153721 cites W3034054712 @default.
- W4306153721 cites W3043183554 @default.
- W4306153721 cites W3048275157 @default.
- W4306153721 cites W3066454894 @default.
- W4306153721 cites W3099850646 @default.
- W4306153721 cites W3100388886 @default.
- W4306153721 cites W3100826601 @default.
- W4306153721 cites W3107591966 @default.
- W4306153721 cites W3123390980 @default.
- W4306153721 cites W3124675547 @default.
- W4306153721 cites W3125860323 @default.
- W4306153721 cites W3127148410 @default.
- W4306153721 cites W3155760367 @default.
- W4306153721 cites W3203208792 @default.
- W4306153721 cites W3205965083 @default.
- W4306153721 cites W3214821343 @default.
- W4306153721 cites W4220730824 @default.
- W4306153721 cites W764651262 @default.
- W4306153721 doi "https://doi.org/10.3390/rs14205118" @default.
- W4306153721 hasPublicationYear "2022" @default.
- W4306153721 type Work @default.
- W4306153721 citedByCount "5" @default.
- W4306153721 countsByYear W43061537212023 @default.
- W4306153721 crossrefType "journal-article" @default.
- W4306153721 hasAuthorship W4306153721A5039991862 @default.
- W4306153721 hasAuthorship W4306153721A5047270197 @default.
- W4306153721 hasAuthorship W4306153721A5056740310 @default.
- W4306153721 hasAuthorship W4306153721A5069652653 @default.
- W4306153721 hasAuthorship W4306153721A5074045214 @default.
- W4306153721 hasAuthorship W4306153721A5088242752 @default.
- W4306153721 hasBestOaLocation W43061537211 @default.
- W4306153721 hasConcept C150899416 @default.
- W4306153721 hasConcept C153180895 @default.
- W4306153721 hasConcept C154945302 @default.
- W4306153721 hasConcept C159078339 @default.
- W4306153721 hasConcept C31972630 @default.
- W4306153721 hasConcept C41008148 @default.
- W4306153721 hasConcept C52622490 @default.
- W4306153721 hasConcept C95623464 @default.
- W4306153721 hasConceptScore W4306153721C150899416 @default.
- W4306153721 hasConceptScore W4306153721C153180895 @default.
- W4306153721 hasConceptScore W4306153721C154945302 @default.
- W4306153721 hasConceptScore W4306153721C159078339 @default.
- W4306153721 hasConceptScore W4306153721C31972630 @default.
- W4306153721 hasConceptScore W4306153721C41008148 @default.
- W4306153721 hasConceptScore W4306153721C52622490 @default.