Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306154313> ?p ?o ?g. }
- W4306154313 endingPage "737" @default.
- W4306154313 startingPage "721" @default.
- W4306154313 abstract "As image sensor electronics have progressed, and hyperspectral images have been used in a wide range of applications. In terms of recognizing the classes, a lot of research work has been done to extract useful information from the available unstructured knowledge database. The use of spectral and geographical datatypes in images can improve the classification precision. To improve the accuracy of the energetic-spectral snap analysis, combining dimensional and spectral data is a good idea. This research study examines the history of dimensional facts based on energetic-spectral image classification designs by using prepared and semi-directed classifiers to classify detached sensing images with particularized class labels. Long-term data are removed if the features are protensive. To increase the veracity of classification, the extracted traits are prepared by utilizing multiple classifiers. The preparation and sinking balance towards the loss function have been reused to train the classifiers. To avoid local minima, the preparation is approved by utilizing various tiers for accompanying the extra balancing limits. To overcome the risk of establishing a contradictory validity image, each detached perceiving image is classified throughout the experiment stage. Exploratory discoveries demand higher validity in-class criteria than other advanced directed classifier techniques." @default.
- W4306154313 created "2022-10-14" @default.
- W4306154313 creator A5030056528 @default.
- W4306154313 creator A5044243932 @default.
- W4306154313 creator A5052786847 @default.
- W4306154313 creator A5072211976 @default.
- W4306154313 creator A5072340142 @default.
- W4306154313 date "2022-10-14" @default.
- W4306154313 modified "2023-10-01" @default.
- W4306154313 title "Study of Land Cover Classification from Hyperspectral Images Using Deep Learning Algorithm" @default.
- W4306154313 cites W1590946397 @default.
- W4306154313 cites W1939429412 @default.
- W4306154313 cites W1977608287 @default.
- W4306154313 cites W1977617632 @default.
- W4306154313 cites W1980511770 @default.
- W4306154313 cites W1997718749 @default.
- W4306154313 cites W2001298023 @default.
- W4306154313 cites W2005106632 @default.
- W4306154313 cites W2018482939 @default.
- W4306154313 cites W2041100636 @default.
- W4306154313 cites W2041693072 @default.
- W4306154313 cites W2044439250 @default.
- W4306154313 cites W2045299986 @default.
- W4306154313 cites W2053615857 @default.
- W4306154313 cites W2053852479 @default.
- W4306154313 cites W2068742516 @default.
- W4306154313 cites W2084260365 @default.
- W4306154313 cites W2085529604 @default.
- W4306154313 cites W2093836791 @default.
- W4306154313 cites W2098676252 @default.
- W4306154313 cites W2106277226 @default.
- W4306154313 cites W2121766492 @default.
- W4306154313 cites W2125240520 @default.
- W4306154313 cites W2134969826 @default.
- W4306154313 cites W2158108683 @default.
- W4306154313 cites W2315347323 @default.
- W4306154313 cites W2316226477 @default.
- W4306154313 cites W2328456116 @default.
- W4306154313 cites W2332185029 @default.
- W4306154313 cites W2347115704 @default.
- W4306154313 cites W2548791488 @default.
- W4306154313 cites W2576555010 @default.
- W4306154313 cites W2602031553 @default.
- W4306154313 cites W3004925702 @default.
- W4306154313 cites W3010227114 @default.
- W4306154313 cites W3043181422 @default.
- W4306154313 cites W3047443805 @default.
- W4306154313 cites W3091235251 @default.
- W4306154313 cites W3128975458 @default.
- W4306154313 cites W3162620147 @default.
- W4306154313 cites W3173934833 @default.
- W4306154313 cites W3182212562 @default.
- W4306154313 cites W4206931805 @default.
- W4306154313 cites W4226019741 @default.
- W4306154313 cites W4235271303 @default.
- W4306154313 doi "https://doi.org/10.1007/978-981-19-3035-5_54" @default.
- W4306154313 hasPublicationYear "2022" @default.
- W4306154313 type Work @default.
- W4306154313 citedByCount "14" @default.
- W4306154313 countsByYear W43061543132023 @default.
- W4306154313 crossrefType "book-chapter" @default.
- W4306154313 hasAuthorship W4306154313A5030056528 @default.
- W4306154313 hasAuthorship W4306154313A5044243932 @default.
- W4306154313 hasAuthorship W4306154313A5052786847 @default.
- W4306154313 hasAuthorship W4306154313A5072211976 @default.
- W4306154313 hasAuthorship W4306154313A5072340142 @default.
- W4306154313 hasConcept C115961682 @default.
- W4306154313 hasConcept C119857082 @default.
- W4306154313 hasConcept C124101348 @default.
- W4306154313 hasConcept C127413603 @default.
- W4306154313 hasConcept C134306372 @default.
- W4306154313 hasConcept C147176958 @default.
- W4306154313 hasConcept C153180895 @default.
- W4306154313 hasConcept C154945302 @default.
- W4306154313 hasConcept C159078339 @default.
- W4306154313 hasConcept C186633575 @default.
- W4306154313 hasConcept C205649164 @default.
- W4306154313 hasConcept C2777212361 @default.
- W4306154313 hasConcept C2780648208 @default.
- W4306154313 hasConcept C33923547 @default.
- W4306154313 hasConcept C41008148 @default.
- W4306154313 hasConcept C4792198 @default.
- W4306154313 hasConcept C62649853 @default.
- W4306154313 hasConcept C75294576 @default.
- W4306154313 hasConcept C95623464 @default.
- W4306154313 hasConceptScore W4306154313C115961682 @default.
- W4306154313 hasConceptScore W4306154313C119857082 @default.
- W4306154313 hasConceptScore W4306154313C124101348 @default.
- W4306154313 hasConceptScore W4306154313C127413603 @default.
- W4306154313 hasConceptScore W4306154313C134306372 @default.
- W4306154313 hasConceptScore W4306154313C147176958 @default.
- W4306154313 hasConceptScore W4306154313C153180895 @default.
- W4306154313 hasConceptScore W4306154313C154945302 @default.
- W4306154313 hasConceptScore W4306154313C159078339 @default.
- W4306154313 hasConceptScore W4306154313C186633575 @default.
- W4306154313 hasConceptScore W4306154313C205649164 @default.
- W4306154313 hasConceptScore W4306154313C2777212361 @default.
- W4306154313 hasConceptScore W4306154313C2780648208 @default.