Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306156619> ?p ?o ?g. }
- W4306156619 abstract "This study aimed to evaluate the artificial intelligence (AI)-based coronary artery calcium (CAC) quantification and regional distribution of CAC on non-gated chest CT, using standard electrocardiograph (ECG)-gated CAC scoring as the reference.In this retrospective study, a total of 405 patients underwent non-gated chest CT and standard ECG-gated cardiac CT. An AI-based algorithm was used for automated CAC scoring on chest CT, and Agatston score on cardiac CT was manually quantified. Bland-Altman plots were used to evaluate the agreement of absolute Agatston score between the two scans at the patient and vessel levels. Linearly weighted kappa (κ) was calculated to assess the reliability of AI-based CAC risk categorization and the number of involved vessels on chest CT.The AI-based algorithm showed moderate reliability for the number of involved vessels in comparison to measures on cardiac CT (κ = 0.75, 95% CI 0.70-0.79, P < 0.001) and an assignment agreement of 76%. Considerable coronary arteries with CAC were not identified with a per-vessel false-negative rate of 59.3%, 17.8%, 34.9%, and 34.7% for LM, LAD, CX, and RCA on chest CT. The leading causes for false negatives of LM were motion artifact (56.3%, 18/32) and segmentation error (43.8%, 14/32). The motion artifact was almost the only cause for false negatives of LAD (96.6%, 28/29), CX (96.7%, 29/30), and RCA (100%, 34/34). Absolute Agatston scores on chest CT were underestimated either for the patient and individual vessels except for LAD (median difference: - 12.5, - 11.3, - 5.6, - 18.6 for total, LM, CX, and RCA, all P < 0.01; - 2.5 for LAD, P = 0.18). AI-based total Agatston score yielded good reliability for risk categorization (weighted κ 0.86, P < 0.001) and an assignment agreement of 86.7% on chest CT, with a per-patient false-negative rate of 15.2% (28/184) and false-positive rate of 0.5% (1/221) respectively.AI-based per-patient CAC quantification on non-gated chest CT achieved a good agreement with dedicated ECG-gated CAC scoring overall and highly reliable CVD risk categorization, despite a slight but significant underestimation. However, it is challenging to evaluate the regional distribution of CAC without ECG-synchronization." @default.
- W4306156619 created "2022-10-14" @default.
- W4306156619 creator A5006923447 @default.
- W4306156619 creator A5022493307 @default.
- W4306156619 creator A5023886176 @default.
- W4306156619 creator A5027041701 @default.
- W4306156619 creator A5037178585 @default.
- W4306156619 creator A5037942463 @default.
- W4306156619 creator A5039144826 @default.
- W4306156619 creator A5051769353 @default.
- W4306156619 creator A5066699727 @default.
- W4306156619 date "2022-10-14" @default.
- W4306156619 modified "2023-10-08" @default.
- W4306156619 title "Automated total and vessel-specific coronary artery calcium (CAC) quantification on chest CT: direct comparison with CAC scoring on non-contrast cardiac CT" @default.
- W4306156619 cites W1230072559 @default.
- W4306156619 cites W1809577636 @default.
- W4306156619 cites W1991337537 @default.
- W4306156619 cites W2023391103 @default.
- W4306156619 cites W2069378996 @default.
- W4306156619 cites W2095805774 @default.
- W4306156619 cites W2114343102 @default.
- W4306156619 cites W2127060405 @default.
- W4306156619 cites W2127873596 @default.
- W4306156619 cites W2138778493 @default.
- W4306156619 cites W2153785016 @default.
- W4306156619 cites W2156701375 @default.
- W4306156619 cites W2164443982 @default.
- W4306156619 cites W2172289547 @default.
- W4306156619 cites W2238203791 @default.
- W4306156619 cites W2292719256 @default.
- W4306156619 cites W2300306357 @default.
- W4306156619 cites W2341077482 @default.
- W4306156619 cites W2550578523 @default.
- W4306156619 cites W2744777963 @default.
- W4306156619 cites W2795107827 @default.
- W4306156619 cites W2915053383 @default.
- W4306156619 cites W2915804716 @default.
- W4306156619 cites W2929195044 @default.
- W4306156619 cites W2930564985 @default.
- W4306156619 cites W2962852925 @default.
- W4306156619 cites W2998912485 @default.
- W4306156619 cites W3005949594 @default.
- W4306156619 cites W3015101693 @default.
- W4306156619 cites W3025351920 @default.
- W4306156619 cites W3108625985 @default.
- W4306156619 cites W3126008863 @default.
- W4306156619 cites W3183856851 @default.
- W4306156619 cites W3191892695 @default.
- W4306156619 cites W4225429079 @default.
- W4306156619 cites W4294214983 @default.
- W4306156619 doi "https://doi.org/10.1186/s12880-022-00907-1" @default.
- W4306156619 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36241978" @default.
- W4306156619 hasPublicationYear "2022" @default.
- W4306156619 type Work @default.
- W4306156619 citedByCount "3" @default.
- W4306156619 countsByYear W43061566192023 @default.
- W4306156619 crossrefType "journal-article" @default.
- W4306156619 hasAuthorship W4306156619A5006923447 @default.
- W4306156619 hasAuthorship W4306156619A5022493307 @default.
- W4306156619 hasAuthorship W4306156619A5023886176 @default.
- W4306156619 hasAuthorship W4306156619A5027041701 @default.
- W4306156619 hasAuthorship W4306156619A5037178585 @default.
- W4306156619 hasAuthorship W4306156619A5037942463 @default.
- W4306156619 hasAuthorship W4306156619A5039144826 @default.
- W4306156619 hasAuthorship W4306156619A5051769353 @default.
- W4306156619 hasAuthorship W4306156619A5066699727 @default.
- W4306156619 hasBestOaLocation W43061566191 @default.
- W4306156619 hasConcept C126838900 @default.
- W4306156619 hasConcept C138885662 @default.
- W4306156619 hasConcept C154945302 @default.
- W4306156619 hasConcept C164705383 @default.
- W4306156619 hasConcept C2778704086 @default.
- W4306156619 hasConcept C2778724333 @default.
- W4306156619 hasConcept C2779010991 @default.
- W4306156619 hasConcept C2780609585 @default.
- W4306156619 hasConcept C2989005 @default.
- W4306156619 hasConcept C2994533308 @default.
- W4306156619 hasConcept C41008148 @default.
- W4306156619 hasConcept C41895202 @default.
- W4306156619 hasConcept C544519230 @default.
- W4306156619 hasConcept C71924100 @default.
- W4306156619 hasConceptScore W4306156619C126838900 @default.
- W4306156619 hasConceptScore W4306156619C138885662 @default.
- W4306156619 hasConceptScore W4306156619C154945302 @default.
- W4306156619 hasConceptScore W4306156619C164705383 @default.
- W4306156619 hasConceptScore W4306156619C2778704086 @default.
- W4306156619 hasConceptScore W4306156619C2778724333 @default.
- W4306156619 hasConceptScore W4306156619C2779010991 @default.
- W4306156619 hasConceptScore W4306156619C2780609585 @default.
- W4306156619 hasConceptScore W4306156619C2989005 @default.
- W4306156619 hasConceptScore W4306156619C2994533308 @default.
- W4306156619 hasConceptScore W4306156619C41008148 @default.
- W4306156619 hasConceptScore W4306156619C41895202 @default.
- W4306156619 hasConceptScore W4306156619C544519230 @default.
- W4306156619 hasConceptScore W4306156619C71924100 @default.
- W4306156619 hasIssue "1" @default.
- W4306156619 hasLocation W43061566191 @default.
- W4306156619 hasLocation W43061566192 @default.
- W4306156619 hasLocation W43061566193 @default.
- W4306156619 hasLocation W43061566194 @default.