Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306158368> ?p ?o ?g. }
- W4306158368 endingPage "120104" @default.
- W4306158368 startingPage "120104" @default.
- W4306158368 abstract "• Oil sludge (OS) addition improved oil quality of rice straw (RS) co-pyrolysis. • Alkanes and olefins in oil increased while oxygenates generation was inhibited. • Torrefied RS also enhanced alkane production due to re-polymerization of hydrocarbon intermediates. • Co-pyrolysis mechanisms were proposed focusing on synergetic interactions. Pyrolysis of biomass offers a promising pathway to alleviate the depletion of fossil energy. Nonetheless, the high oxygen content in biomass-derived pyrolysis oil makes bio-oil a low-quality by-product and limits its commercial application. On the other hand, oil sludge (OS) is hazardous waste from the petroleum industry and is difficult for combustion treatment due to its high ash content. In this work, torrefaction of rice straw (RS) and its co-pyrolysis with oil sludge (OS) was performed to enhance the production of hydrocarbons. Influences of torrefaction on altering the synergistic effects during co-pyrolysis were investigated. Intensified torrefaction (from 200 to 300 °C) of RS gradually resulted in lower volatiles, higher ash content, low crystallinity, enhanced surface aromaticity, and improved bio-oil quality. Consequently, pyrolysis of torrefied RS (TS) yielded more char at the expense of volatiles. The addition of OS into the co-pyrolysis of RS promoted char conversion efficiency and yielded a positive synergistic effect on gas production by 0.97–5.40%. The co-pyrolysis significantly enhanced the formation of alkanes (11.22–23.84%) and olefins (2.33–4.48%), while suppressing the generation of oxygenates (13.71–26.54%) in oil. On the other hand, severe torrefaction of RS shifted the main temperature range of decomposition close to that of OS, leading to an intensive radical reaction between OS-derived hydrocarbon radicals and lignin derivatives evolved from TS. For example, a positive synergistic effect on oil generation was observed when OS was blended into TS obtained at 250 °C (3.22% increase). However, intensified torrefaction weakened the synergistic formation of hydrocarbons, although the re-polymerization of hydrocarbon intermediates from OS and alkyl radicals from TS contributed to alkane production, especially heavy-weight straight-chain alkanes. Moreover, torrefaction promoted the product energy yield and the total energy efficiency of individual pyrolysis of RS and co-pyrolysis of RS and OS. By comparisons between RS and TS focusing on synergetic interactions, this work proposes co-pyrolysis mechanisms of OS and RS (or TS)." @default.
- W4306158368 created "2022-10-14" @default.
- W4306158368 creator A5000893018 @default.
- W4306158368 creator A5014697830 @default.
- W4306158368 creator A5027934332 @default.
- W4306158368 creator A5033963494 @default.
- W4306158368 creator A5068154136 @default.
- W4306158368 date "2022-12-01" @default.
- W4306158368 modified "2023-09-29" @default.
- W4306158368 title "Co-pyrolysis coupled with torrefaction enhances hydrocarbons production from rice straw and oil sludge: The effect of torrefaction on co-pyrolysis synergistic behaviors" @default.
- W4306158368 cites W1967148069 @default.
- W4306158368 cites W1988995892 @default.
- W4306158368 cites W1994034634 @default.
- W4306158368 cites W1997087247 @default.
- W4306158368 cites W2000761731 @default.
- W4306158368 cites W2001168065 @default.
- W4306158368 cites W2008085407 @default.
- W4306158368 cites W2008239616 @default.
- W4306158368 cites W2017045874 @default.
- W4306158368 cites W2033118670 @default.
- W4306158368 cites W2040885940 @default.
- W4306158368 cites W2048313700 @default.
- W4306158368 cites W2069059903 @default.
- W4306158368 cites W2076981960 @default.
- W4306158368 cites W2086723905 @default.
- W4306158368 cites W2087725719 @default.
- W4306158368 cites W2097307505 @default.
- W4306158368 cites W2225755105 @default.
- W4306158368 cites W2313239022 @default.
- W4306158368 cites W2316001118 @default.
- W4306158368 cites W2324969330 @default.
- W4306158368 cites W2353348434 @default.
- W4306158368 cites W2415220651 @default.
- W4306158368 cites W2440852996 @default.
- W4306158368 cites W2461229512 @default.
- W4306158368 cites W2530022831 @default.
- W4306158368 cites W2582715191 @default.
- W4306158368 cites W2587472327 @default.
- W4306158368 cites W2781731218 @default.
- W4306158368 cites W2789183459 @default.
- W4306158368 cites W2789588666 @default.
- W4306158368 cites W2793924256 @default.
- W4306158368 cites W2800758146 @default.
- W4306158368 cites W2803329393 @default.
- W4306158368 cites W2884609373 @default.
- W4306158368 cites W2906979492 @default.
- W4306158368 cites W2912156316 @default.
- W4306158368 cites W2917078376 @default.
- W4306158368 cites W2963253975 @default.
- W4306158368 cites W2974464602 @default.
- W4306158368 cites W3011934589 @default.
- W4306158368 cites W3027557085 @default.
- W4306158368 cites W3082336200 @default.
- W4306158368 cites W3082508790 @default.
- W4306158368 cites W3083807880 @default.
- W4306158368 cites W3097532599 @default.
- W4306158368 cites W3108199127 @default.
- W4306158368 cites W3133602713 @default.
- W4306158368 cites W3160871169 @default.
- W4306158368 cites W3165785010 @default.
- W4306158368 cites W3194115057 @default.
- W4306158368 cites W3194920885 @default.
- W4306158368 cites W3208786054 @default.
- W4306158368 doi "https://doi.org/10.1016/j.apenergy.2022.120104" @default.
- W4306158368 hasPublicationYear "2022" @default.
- W4306158368 type Work @default.
- W4306158368 citedByCount "6" @default.
- W4306158368 countsByYear W43061583682023 @default.
- W4306158368 crossrefType "journal-article" @default.
- W4306158368 hasAuthorship W4306158368A5000893018 @default.
- W4306158368 hasAuthorship W4306158368A5014697830 @default.
- W4306158368 hasAuthorship W4306158368A5027934332 @default.
- W4306158368 hasAuthorship W4306158368A5033963494 @default.
- W4306158368 hasAuthorship W4306158368A5068154136 @default.
- W4306158368 hasConcept C115540264 @default.
- W4306158368 hasConcept C127413603 @default.
- W4306158368 hasConcept C162857116 @default.
- W4306158368 hasConcept C179104552 @default.
- W4306158368 hasConcept C185592680 @default.
- W4306158368 hasConcept C2779587293 @default.
- W4306158368 hasConcept C2992001702 @default.
- W4306158368 hasConcept C36759035 @default.
- W4306158368 hasConcept C39432304 @default.
- W4306158368 hasConcept C528095902 @default.
- W4306158368 hasConcept C53991642 @default.
- W4306158368 hasConcept C548081761 @default.
- W4306158368 hasConcept C6557445 @default.
- W4306158368 hasConcept C86803240 @default.
- W4306158368 hasConceptScore W4306158368C115540264 @default.
- W4306158368 hasConceptScore W4306158368C127413603 @default.
- W4306158368 hasConceptScore W4306158368C162857116 @default.
- W4306158368 hasConceptScore W4306158368C179104552 @default.
- W4306158368 hasConceptScore W4306158368C185592680 @default.
- W4306158368 hasConceptScore W4306158368C2779587293 @default.
- W4306158368 hasConceptScore W4306158368C2992001702 @default.
- W4306158368 hasConceptScore W4306158368C36759035 @default.
- W4306158368 hasConceptScore W4306158368C39432304 @default.
- W4306158368 hasConceptScore W4306158368C528095902 @default.