Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306164254> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4306164254 abstract "Objective In older patients receiving general anesthesia, postoperative delirium (POD) is the most frequent form of cerebral dysfunction. Early identification of patients at higher risk to develop POD could provide the opportunity to adapt intraoperative and postoperative therapy. We, therefore, propose a machine learning approach to predict the risk of POD in elderly patients, using routine intraoperative electroencephalography (EEG) and clinical data that are readily available in the operating room. Methods We conducted a retrospective analysis of the data of a single-center study at the Charité-Universitätsmedizin Berlin, Department of Anesthesiology [ISRCTN 36437985], including 1,277 patients, older than 60 years with planned surgery and general anesthesia. To deal with the class imbalance, we used balanced ensemble methods, specifically Bagging and Random Forests and as a performance measure, the area under the ROC curve (AUC-ROC). We trained our models including basic clinical parameters and intraoperative EEG features in particular classical spectral and burst suppression signatures as well as multi-band covariance matrices, which were classified, taking advantage of the geometry of a Riemannian manifold. The models were validated with 10 repeats of a 10-fold cross-validation. Results Including EEG data in the classification resulted in a robust and reliable risk evaluation for POD. The clinical parameters alone achieved an AUC-ROC score of 0.75. Including EEG signatures improved the classification when the patients were grouped by anesthetic agents and evaluated separately for each group. The spectral features alone showed an AUC-ROC score of 0.66; the covariance features showed an AUC-ROC score of 0.68. The AUC-ROC scores of EEG features relative to patient data differed by anesthetic group. The best performance was reached, combining both the EEG features and the clinical parameters. Overall, the AUC-ROC score was 0.77, for patients receiving Propofol it was 0.78, for those receiving Sevoflurane it was 0.8 and for those receiving Desflurane 0.73. Applying the trained prediction model to an independent data set of a different clinical study confirmed these results for the combined classification, while the classifier on clinical parameters alone did not generalize. Conclusion A machine learning approach combining intraoperative frontal EEG signatures with clinical parameters could be an easily applicable tool to early identify patients at risk to develop POD." @default.
- W4306164254 created "2022-10-14" @default.
- W4306164254 creator A5008624400 @default.
- W4306164254 creator A5008694080 @default.
- W4306164254 creator A5019432387 @default.
- W4306164254 creator A5060955050 @default.
- W4306164254 creator A5069963022 @default.
- W4306164254 date "2022-10-14" @default.
- W4306164254 modified "2023-10-14" @default.
- W4306164254 title "Machine-learning model predicting postoperative delirium in older patients using intraoperative frontal electroencephalographic signatures" @default.
- W4306164254 cites W1891631519 @default.
- W4306164254 cites W2002996884 @default.
- W4306164254 cites W2067957582 @default.
- W4306164254 cites W2099454382 @default.
- W4306164254 cites W2106822551 @default.
- W4306164254 cites W2119963163 @default.
- W4306164254 cites W2156100110 @default.
- W4306164254 cites W2473477790 @default.
- W4306164254 cites W2586426771 @default.
- W4306164254 cites W2602279467 @default.
- W4306164254 cites W2746829572 @default.
- W4306164254 cites W2752602132 @default.
- W4306164254 cites W2803897273 @default.
- W4306164254 cites W2911024080 @default.
- W4306164254 cites W2962200422 @default.
- W4306164254 cites W2978901124 @default.
- W4306164254 cites W2981152026 @default.
- W4306164254 cites W2997591727 @default.
- W4306164254 cites W3033033107 @default.
- W4306164254 cites W4206417227 @default.
- W4306164254 cites W4226231505 @default.
- W4306164254 cites W4226270310 @default.
- W4306164254 cites W4226440655 @default.
- W4306164254 cites W4288063384 @default.
- W4306164254 cites W4300498324 @default.
- W4306164254 doi "https://doi.org/10.3389/fnagi.2022.911088" @default.
- W4306164254 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36313029" @default.
- W4306164254 hasPublicationYear "2022" @default.
- W4306164254 type Work @default.
- W4306164254 citedByCount "0" @default.
- W4306164254 crossrefType "journal-article" @default.
- W4306164254 hasAuthorship W4306164254A5008624400 @default.
- W4306164254 hasAuthorship W4306164254A5008694080 @default.
- W4306164254 hasAuthorship W4306164254A5019432387 @default.
- W4306164254 hasAuthorship W4306164254A5060955050 @default.
- W4306164254 hasAuthorship W4306164254A5069963022 @default.
- W4306164254 hasBestOaLocation W43061642541 @default.
- W4306164254 hasConcept C118552586 @default.
- W4306164254 hasConcept C126322002 @default.
- W4306164254 hasConcept C154945302 @default.
- W4306164254 hasConcept C167639399 @default.
- W4306164254 hasConcept C169258074 @default.
- W4306164254 hasConcept C177713679 @default.
- W4306164254 hasConcept C2778162923 @default.
- W4306164254 hasConcept C2779526319 @default.
- W4306164254 hasConcept C2779753318 @default.
- W4306164254 hasConcept C41008148 @default.
- W4306164254 hasConcept C42219234 @default.
- W4306164254 hasConcept C522805319 @default.
- W4306164254 hasConcept C58471807 @default.
- W4306164254 hasConcept C71924100 @default.
- W4306164254 hasConceptScore W4306164254C118552586 @default.
- W4306164254 hasConceptScore W4306164254C126322002 @default.
- W4306164254 hasConceptScore W4306164254C154945302 @default.
- W4306164254 hasConceptScore W4306164254C167639399 @default.
- W4306164254 hasConceptScore W4306164254C169258074 @default.
- W4306164254 hasConceptScore W4306164254C177713679 @default.
- W4306164254 hasConceptScore W4306164254C2778162923 @default.
- W4306164254 hasConceptScore W4306164254C2779526319 @default.
- W4306164254 hasConceptScore W4306164254C2779753318 @default.
- W4306164254 hasConceptScore W4306164254C41008148 @default.
- W4306164254 hasConceptScore W4306164254C42219234 @default.
- W4306164254 hasConceptScore W4306164254C522805319 @default.
- W4306164254 hasConceptScore W4306164254C58471807 @default.
- W4306164254 hasConceptScore W4306164254C71924100 @default.
- W4306164254 hasFunder F4320320879 @default.
- W4306164254 hasLocation W43061642541 @default.
- W4306164254 hasLocation W43061642542 @default.
- W4306164254 hasLocation W43061642543 @default.
- W4306164254 hasLocation W43061642544 @default.
- W4306164254 hasOpenAccess W4306164254 @default.
- W4306164254 hasPrimaryLocation W43061642541 @default.
- W4306164254 hasRelatedWork W1975625948 @default.
- W4306164254 hasRelatedWork W2097404976 @default.
- W4306164254 hasRelatedWork W2115820610 @default.
- W4306164254 hasRelatedWork W2891214935 @default.
- W4306164254 hasRelatedWork W2968497184 @default.
- W4306164254 hasRelatedWork W3115831986 @default.
- W4306164254 hasRelatedWork W3198654803 @default.
- W4306164254 hasRelatedWork W384748743 @default.
- W4306164254 hasRelatedWork W4207043987 @default.
- W4306164254 hasRelatedWork W4210415540 @default.
- W4306164254 hasVolume "14" @default.
- W4306164254 isParatext "false" @default.
- W4306164254 isRetracted "false" @default.
- W4306164254 workType "article" @default.