Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306166229> ?p ?o ?g. }
- W4306166229 endingPage "1407" @default.
- W4306166229 startingPage "1393" @default.
- W4306166229 abstract "SUMMARY Automatic S-wave arrival time estimation is, due to the complex characteristic of most of the S onsets, a topic of ongoing research. Manual as well as automated S-wave picking is more difficult than P-wave picking, as S wave is usually buried in the preceding P-coda. In addition, S-wave splitting, due to possible seismic anisotropy, and the presence of Sp-converted precursors, due to shallow strong velocity discontinuities, increase the complexity of S-wave onset time picking. The goal of this study is to develop an automatic S-wave onset time picking algorithm, using undecimated discrete wavelet transform (UDWT) and autoregressive (AR) model. The novelty of this research is the application of UDWT to define a characteristic function based on the seismogram envelope that leads to accurate S-wave detection. First, an initial arrival time is estimated using the signal envelope. Then S-wave onset is improved with an AR model regarding the fact that a short time after S waves arrival the amplitude is maximized. The robustness of the proposed method under different SNR’s has been tested on synthetic seismograms, contaminated with noise. It has also been applied to 180 local and regional events with magnitude greater than 4 and epicentral distance from 100 to 1000 km, recorded by the permanent seismic networks within Iran. We also applied our method to a data set from Japan; the data set contains 30 events with a magnitude range greater than 3. The results of our proposed algorithm are compared with a traditional reference method, novel deep learning methods and manually picked phases. The tested data set contains 1160 manual picks from Iran earthquakes data set and 518 manual picks from Japan earthquakes data set. The results show that the proposed method appears to be promising to replace manual phase picking. The automatic picking algorithm described in this study is applicable in many seismological studies that require S onset detection and picking." @default.
- W4306166229 created "2022-10-14" @default.
- W4306166229 creator A5017496816 @default.
- W4306166229 creator A5018140511 @default.
- W4306166229 creator A5026041687 @default.
- W4306166229 creator A5060499864 @default.
- W4306166229 creator A5087160893 @default.
- W4306166229 date "2022-10-12" @default.
- W4306166229 modified "2023-09-26" @default.
- W4306166229 title "A hybrid method based on undecimated discrete wavelet transform and autoregressive model to<i>S</i>-wave automatic picking" @default.
- W4306166229 cites W1825561247 @default.
- W4306166229 cites W1843862463 @default.
- W4306166229 cites W1971693734 @default.
- W4306166229 cites W2008957283 @default.
- W4306166229 cites W2018314772 @default.
- W4306166229 cites W2020735775 @default.
- W4306166229 cites W2023221327 @default.
- W4306166229 cites W2035435544 @default.
- W4306166229 cites W2040221088 @default.
- W4306166229 cites W2063229457 @default.
- W4306166229 cites W2102494853 @default.
- W4306166229 cites W2108936612 @default.
- W4306166229 cites W2116258620 @default.
- W4306166229 cites W2125742046 @default.
- W4306166229 cites W2148681139 @default.
- W4306166229 cites W2157255321 @default.
- W4306166229 cites W2169133017 @default.
- W4306166229 cites W2278399961 @default.
- W4306166229 cites W2289565177 @default.
- W4306166229 cites W2310542534 @default.
- W4306166229 cites W2312281744 @default.
- W4306166229 cites W2324129795 @default.
- W4306166229 cites W2338095465 @default.
- W4306166229 cites W2528961483 @default.
- W4306166229 cites W2795020107 @default.
- W4306166229 cites W2912815540 @default.
- W4306166229 cites W2937917695 @default.
- W4306166229 cites W2970355760 @default.
- W4306166229 cites W2971812033 @default.
- W4306166229 cites W2984253546 @default.
- W4306166229 cites W3047855151 @default.
- W4306166229 cites W3064840286 @default.
- W4306166229 cites W3092333852 @default.
- W4306166229 cites W3095539442 @default.
- W4306166229 cites W3124928229 @default.
- W4306166229 cites W412166873 @default.
- W4306166229 cites W4220904918 @default.
- W4306166229 cites W4225931533 @default.
- W4306166229 doi "https://doi.org/10.1093/gji/ggac398" @default.
- W4306166229 hasPublicationYear "2022" @default.
- W4306166229 type Work @default.
- W4306166229 citedByCount "1" @default.
- W4306166229 countsByYear W43061662292023 @default.
- W4306166229 crossrefType "journal-article" @default.
- W4306166229 hasAuthorship W4306166229A5017496816 @default.
- W4306166229 hasAuthorship W4306166229A5018140511 @default.
- W4306166229 hasAuthorship W4306166229A5026041687 @default.
- W4306166229 hasAuthorship W4306166229A5060499864 @default.
- W4306166229 hasAuthorship W4306166229A5087160893 @default.
- W4306166229 hasConcept C105795698 @default.
- W4306166229 hasConcept C11413529 @default.
- W4306166229 hasConcept C120665830 @default.
- W4306166229 hasConcept C121332964 @default.
- W4306166229 hasConcept C127313418 @default.
- W4306166229 hasConcept C134306372 @default.
- W4306166229 hasConcept C153180895 @default.
- W4306166229 hasConcept C154945302 @default.
- W4306166229 hasConcept C15627037 @default.
- W4306166229 hasConcept C159877910 @default.
- W4306166229 hasConcept C165205528 @default.
- W4306166229 hasConcept C169744125 @default.
- W4306166229 hasConcept C180205008 @default.
- W4306166229 hasConcept C197424946 @default.
- W4306166229 hasConcept C33923547 @default.
- W4306166229 hasConcept C41008148 @default.
- W4306166229 hasConcept C47432892 @default.
- W4306166229 hasConcept C554190296 @default.
- W4306166229 hasConcept C76155785 @default.
- W4306166229 hasConcept C78542244 @default.
- W4306166229 hasConceptScore W4306166229C105795698 @default.
- W4306166229 hasConceptScore W4306166229C11413529 @default.
- W4306166229 hasConceptScore W4306166229C120665830 @default.
- W4306166229 hasConceptScore W4306166229C121332964 @default.
- W4306166229 hasConceptScore W4306166229C127313418 @default.
- W4306166229 hasConceptScore W4306166229C134306372 @default.
- W4306166229 hasConceptScore W4306166229C153180895 @default.
- W4306166229 hasConceptScore W4306166229C154945302 @default.
- W4306166229 hasConceptScore W4306166229C15627037 @default.
- W4306166229 hasConceptScore W4306166229C159877910 @default.
- W4306166229 hasConceptScore W4306166229C165205528 @default.
- W4306166229 hasConceptScore W4306166229C169744125 @default.
- W4306166229 hasConceptScore W4306166229C180205008 @default.
- W4306166229 hasConceptScore W4306166229C197424946 @default.
- W4306166229 hasConceptScore W4306166229C33923547 @default.
- W4306166229 hasConceptScore W4306166229C41008148 @default.
- W4306166229 hasConceptScore W4306166229C47432892 @default.
- W4306166229 hasConceptScore W4306166229C554190296 @default.
- W4306166229 hasConceptScore W4306166229C76155785 @default.