Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306173406> ?p ?o ?g. }
- W4306173406 endingPage "984" @default.
- W4306173406 startingPage "964" @default.
- W4306173406 abstract "Abstract Active–dissipative evolution equations emerge in a variety of physical and technological applications including liquid film flows, flame propagation, epitaxial film growth in materials manufacturing, to mention a few. They are characterized by three main ingredients: a term producing growth (active), a term providing damping at short length scales (dissipative) and a nonlinear term that transfers energy between modes and crucially produces a nonlinear saturation. The manifestation of these three mechanisms can produce large-time spatiotemporal chaos as evidenced by the Kuramoto-Sivashinsky equation (negative diffusion, fourth-order dissipation and a Burgers nonlinearity), which is arguably the simplest partial differential equation to produce chaos. The exact form of the terms (and in particular their Fourier symbol) determines the type of attractors that the equations possess. The present study considers the spatial analyticity of solutions under the assumption that the equations possess a global attractor. In particular, we investigate the spatial analyticity of solutions of a class of one-dimensional evolutionary pseudo-differential equations with Burgers nonlinearity, which are periodic in space, thus generalizing the Kuramoto-Sivashinsky equation motivated by both applications and their fundamental mathematical properties. Analyticity is examined by utilizing a criterion involving the rate of growth of suitable norms of the $n$th spatial derivative of the solution, with respect to the spatial variable, as $n$ tends to infinity. An estimate of the rate of growth of the $n$th spatial derivative is obtained by fine-tuning the spectral method, developed elsewhere. We prove that the solutions are analytic if $gamma $, the order of dissipation of the pseudo-differential operator, is higher than one. We also present numerical evidence suggesting that this is optimal, i.e. if $gamma $ is not larger that one, then the solution is not in general analytic. Extensive numerical experiments are undertaken to confirm the analysis and also to compute the band of analyticity of solutions for a wide range of active–dissipative terms and large spatial periods that support chaotic solutions. These ideas can be applied to a wide class of active–dissipative–dispersive pseudo-differential equations." @default.
- W4306173406 created "2022-10-14" @default.
- W4306173406 creator A5022278914 @default.
- W4306173406 creator A5052641757 @default.
- W4306173406 creator A5063339212 @default.
- W4306173406 date "2022-11-15" @default.
- W4306173406 modified "2023-10-18" @default.
- W4306173406 title "Optimal analyticity estimates for non-linear active–dissipative evolution equations" @default.
- W4306173406 cites W1608706797 @default.
- W4306173406 cites W1727151331 @default.
- W4306173406 cites W1951301826 @default.
- W4306173406 cites W1964896841 @default.
- W4306173406 cites W1967955839 @default.
- W4306173406 cites W1981396186 @default.
- W4306173406 cites W1982999858 @default.
- W4306173406 cites W1985160080 @default.
- W4306173406 cites W1994213630 @default.
- W4306173406 cites W1997352424 @default.
- W4306173406 cites W2002921373 @default.
- W4306173406 cites W2014446118 @default.
- W4306173406 cites W2032866418 @default.
- W4306173406 cites W2043656689 @default.
- W4306173406 cites W2048821377 @default.
- W4306173406 cites W2061438139 @default.
- W4306173406 cites W2063772179 @default.
- W4306173406 cites W2067019352 @default.
- W4306173406 cites W2070472528 @default.
- W4306173406 cites W2075045755 @default.
- W4306173406 cites W2077998184 @default.
- W4306173406 cites W2078295030 @default.
- W4306173406 cites W2079483380 @default.
- W4306173406 cites W2088626621 @default.
- W4306173406 cites W2094925628 @default.
- W4306173406 cites W2112181160 @default.
- W4306173406 cites W2115171184 @default.
- W4306173406 cites W2127426124 @default.
- W4306173406 cites W2131567068 @default.
- W4306173406 cites W2134855478 @default.
- W4306173406 cites W2147980415 @default.
- W4306173406 cites W2163786768 @default.
- W4306173406 cites W2168933333 @default.
- W4306173406 cites W2336594740 @default.
- W4306173406 cites W2490077818 @default.
- W4306173406 cites W2511503115 @default.
- W4306173406 cites W2530463484 @default.
- W4306173406 cites W2559481134 @default.
- W4306173406 cites W2805014848 @default.
- W4306173406 cites W2889573288 @default.
- W4306173406 cites W2962981640 @default.
- W4306173406 cites W2963887237 @default.
- W4306173406 cites W2963948023 @default.
- W4306173406 cites W2982403547 @default.
- W4306173406 cites W2985557867 @default.
- W4306173406 cites W2994911008 @default.
- W4306173406 cites W3100366510 @default.
- W4306173406 cites W3103935473 @default.
- W4306173406 cites W3105053501 @default.
- W4306173406 cites W3194709474 @default.
- W4306173406 cites W3204795010 @default.
- W4306173406 cites W4213153870 @default.
- W4306173406 doi "https://doi.org/10.1093/imamat/hxac028" @default.
- W4306173406 hasPublicationYear "2022" @default.
- W4306173406 type Work @default.
- W4306173406 citedByCount "0" @default.
- W4306173406 crossrefType "journal-article" @default.
- W4306173406 hasAuthorship W4306173406A5022278914 @default.
- W4306173406 hasAuthorship W4306173406A5052641757 @default.
- W4306173406 hasAuthorship W4306173406A5063339212 @default.
- W4306173406 hasBestOaLocation W43061734061 @default.
- W4306173406 hasConcept C121332964 @default.
- W4306173406 hasConcept C121864883 @default.
- W4306173406 hasConcept C129747778 @default.
- W4306173406 hasConcept C134306372 @default.
- W4306173406 hasConcept C135402231 @default.
- W4306173406 hasConcept C158622935 @default.
- W4306173406 hasConcept C164380108 @default.
- W4306173406 hasConcept C28826006 @default.
- W4306173406 hasConcept C33923547 @default.
- W4306173406 hasConcept C62520636 @default.
- W4306173406 hasConcept C93779851 @default.
- W4306173406 hasConcept C97355855 @default.
- W4306173406 hasConcept C99692599 @default.
- W4306173406 hasConceptScore W4306173406C121332964 @default.
- W4306173406 hasConceptScore W4306173406C121864883 @default.
- W4306173406 hasConceptScore W4306173406C129747778 @default.
- W4306173406 hasConceptScore W4306173406C134306372 @default.
- W4306173406 hasConceptScore W4306173406C135402231 @default.
- W4306173406 hasConceptScore W4306173406C158622935 @default.
- W4306173406 hasConceptScore W4306173406C164380108 @default.
- W4306173406 hasConceptScore W4306173406C28826006 @default.
- W4306173406 hasConceptScore W4306173406C33923547 @default.
- W4306173406 hasConceptScore W4306173406C62520636 @default.
- W4306173406 hasConceptScore W4306173406C93779851 @default.
- W4306173406 hasConceptScore W4306173406C97355855 @default.
- W4306173406 hasConceptScore W4306173406C99692599 @default.
- W4306173406 hasIssue "6" @default.
- W4306173406 hasLocation W43061734061 @default.
- W4306173406 hasOpenAccess W4306173406 @default.