Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306173602> ?p ?o ?g. }
- W4306173602 endingPage "1990" @default.
- W4306173602 startingPage "1979" @default.
- W4306173602 abstract "Abstract Breast carcinoma is a sort of malignancy that begins in the breast. Breast malignancy cells generally structure a tumour that can routinely be seen on an x‐ray or felt like a lump. Despite advances in screening, treatment, and observation that have improved patient endurance rates, breast carcinoma is the most regularly analyzed malignant growth and the subsequent driving reason for malignancy mortality among ladies. Invasive ductal carcinoma is the most boundless breast malignant growth with about 80% of all analyzed cases. It has been found from numerous types of research that artificial intelligence has tremendous capabilities, which is why it is used in various sectors, especially in the healthcare domain. In the initial phase of the medical field, mammography is used for diagnosis, and finding cancer in the case of a dense breast is challenging. The evolution of deep learning and applying the same in the findings are helpful for earlier tracking and medication. The authors have tried to utilize the deep learning concepts for grading breast invasive ductal carcinoma using Transfer Learning in the present work. The authors have used five transfer learning approaches here, namely VGG16, VGG19, InceptionReNetV2, DenseNet121, and DenseNet201 with 50 epochs in the Google Colab platform which has a single 12GB NVIDIA Tesla K80 graphical processing unit (GPU) support that can be used up to 12 h continuously. The dataset used for this work can be openly accessed from http://databiox.com . The experimental results that the authors have received regarding the algorithm's accuracy are as follows: VGG16 with 92.5%, VGG19 with 89.77%, InceptionReNetV2 with 84.46%, DenseNet121 with 92.64%, DenseNet201 with 85.22%. From the experimental results, it is clear that the DenseNet121 gives the maximum accuracy in terms of cancer grading, whereas the InceptionReNetV2 has minimal accuracy." @default.
- W4306173602 created "2022-10-14" @default.
- W4306173602 creator A5000176863 @default.
- W4306173602 creator A5012833142 @default.
- W4306173602 creator A5018918357 @default.
- W4306173602 creator A5035288030 @default.
- W4306173602 creator A5061142267 @default.
- W4306173602 creator A5086573631 @default.
- W4306173602 date "2022-10-14" @default.
- W4306173602 modified "2023-10-16" @default.
- W4306173602 title "A transfer learning‐based system for grading breast invasive ductal carcinoma" @default.
- W4306173602 cites W1986243076 @default.
- W4306173602 cites W2605850958 @default.
- W4306173602 cites W2792902314 @default.
- W4306173602 cites W2883567318 @default.
- W4306173602 cites W2885824038 @default.
- W4306173602 cites W2903119292 @default.
- W4306173602 cites W2913865807 @default.
- W4306173602 cites W2924927402 @default.
- W4306173602 cites W2963446712 @default.
- W4306173602 cites W2973410689 @default.
- W4306173602 cites W2981101506 @default.
- W4306173602 cites W2982406227 @default.
- W4306173602 cites W2988008335 @default.
- W4306173602 cites W2995106101 @default.
- W4306173602 cites W3002658398 @default.
- W4306173602 cites W3006777386 @default.
- W4306173602 cites W3009928129 @default.
- W4306173602 cites W3020203706 @default.
- W4306173602 cites W3034957310 @default.
- W4306173602 cites W3081301319 @default.
- W4306173602 cites W3084893494 @default.
- W4306173602 cites W3088669171 @default.
- W4306173602 cites W3092106208 @default.
- W4306173602 cites W3094475019 @default.
- W4306173602 cites W3095595608 @default.
- W4306173602 cites W3107194210 @default.
- W4306173602 cites W3107625569 @default.
- W4306173602 cites W3127426043 @default.
- W4306173602 cites W3158053885 @default.
- W4306173602 cites W3160911992 @default.
- W4306173602 cites W3172778143 @default.
- W4306173602 cites W3209680726 @default.
- W4306173602 cites W4255421341 @default.
- W4306173602 doi "https://doi.org/10.1049/ipr2.12660" @default.
- W4306173602 hasPublicationYear "2022" @default.
- W4306173602 type Work @default.
- W4306173602 citedByCount "4" @default.
- W4306173602 countsByYear W43061736022022 @default.
- W4306173602 countsByYear W43061736022023 @default.
- W4306173602 crossrefType "journal-article" @default.
- W4306173602 hasAuthorship W4306173602A5000176863 @default.
- W4306173602 hasAuthorship W4306173602A5012833142 @default.
- W4306173602 hasAuthorship W4306173602A5018918357 @default.
- W4306173602 hasAuthorship W4306173602A5035288030 @default.
- W4306173602 hasAuthorship W4306173602A5061142267 @default.
- W4306173602 hasAuthorship W4306173602A5086573631 @default.
- W4306173602 hasBestOaLocation W43061736021 @default.
- W4306173602 hasConcept C108583219 @default.
- W4306173602 hasConcept C121608353 @default.
- W4306173602 hasConcept C126322002 @default.
- W4306173602 hasConcept C126838900 @default.
- W4306173602 hasConcept C127413603 @default.
- W4306173602 hasConcept C142724271 @default.
- W4306173602 hasConcept C147176958 @default.
- W4306173602 hasConcept C150899416 @default.
- W4306173602 hasConcept C154945302 @default.
- W4306173602 hasConcept C2777286243 @default.
- W4306173602 hasConcept C2779399171 @default.
- W4306173602 hasConcept C2780472235 @default.
- W4306173602 hasConcept C2780862961 @default.
- W4306173602 hasConcept C3018521938 @default.
- W4306173602 hasConcept C3020375857 @default.
- W4306173602 hasConcept C41008148 @default.
- W4306173602 hasConcept C530470458 @default.
- W4306173602 hasConcept C71924100 @default.
- W4306173602 hasConceptScore W4306173602C108583219 @default.
- W4306173602 hasConceptScore W4306173602C121608353 @default.
- W4306173602 hasConceptScore W4306173602C126322002 @default.
- W4306173602 hasConceptScore W4306173602C126838900 @default.
- W4306173602 hasConceptScore W4306173602C127413603 @default.
- W4306173602 hasConceptScore W4306173602C142724271 @default.
- W4306173602 hasConceptScore W4306173602C147176958 @default.
- W4306173602 hasConceptScore W4306173602C150899416 @default.
- W4306173602 hasConceptScore W4306173602C154945302 @default.
- W4306173602 hasConceptScore W4306173602C2777286243 @default.
- W4306173602 hasConceptScore W4306173602C2779399171 @default.
- W4306173602 hasConceptScore W4306173602C2780472235 @default.
- W4306173602 hasConceptScore W4306173602C2780862961 @default.
- W4306173602 hasConceptScore W4306173602C3018521938 @default.
- W4306173602 hasConceptScore W4306173602C3020375857 @default.
- W4306173602 hasConceptScore W4306173602C41008148 @default.
- W4306173602 hasConceptScore W4306173602C530470458 @default.
- W4306173602 hasConceptScore W4306173602C71924100 @default.
- W4306173602 hasIssue "7" @default.
- W4306173602 hasLocation W43061736021 @default.
- W4306173602 hasLocation W43061736022 @default.
- W4306173602 hasLocation W43061736023 @default.