Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306173694> ?p ?o ?g. }
- W4306173694 endingPage "1316" @default.
- W4306173694 startingPage "1306" @default.
- W4306173694 abstract "Rationale and Objectives Pancreatic cancer is a common malignant tumor with a dismal prognosis. Preoperative differentiation of extrapancreatic extension (EPE) based on radiomics will facilitate treatment decision-making. Materials and Methods This research retrospectively recruited 156 patients from two medical centers. 122 patients from the center A were randomly divided into the training set and the internal test set in a 4:1 ratio. Additionally, 34 patients from the center B served as the external test set. Radiomics features were extracted from multiparametric MRI (MP-MRI), containing axial T2 weighted imaging (T2WI), diffusion weighted imaging (DWI), and dynamic contrast enhancement (DCE) sequences. The three-step method was used for feature extraction: SelecteKBest, least absolute shrinkage and selection operator (LASSO) algorithm, and recursive feature elimination based on random forest (RFE-RF). The model was constructed using six classifiers based on machine learning, and the classifier with the best performance was chosen. Finally, clinical factors associated with EPE were incorporated into the combined model. Results The classifier with the best performance was XGBoost, which obtained area under curve (AUC) values of 0.853 and 0.848 in the internal and external test sets, respectively. Through SelectKBest, the most relevant clinical factor for EPE was determined to be platelet, which was then added to the combined model, yielding AUC values of 0.880 and 0.848 in the internal and external test sets, respectively. Conclusion Radiomics models had the potential to noninvasively and accurately predict EPE before surgery. Additionally, it would add value to personalized precision treatment. Pancreatic cancer is a common malignant tumor with a dismal prognosis. Preoperative differentiation of extrapancreatic extension (EPE) based on radiomics will facilitate treatment decision-making. This research retrospectively recruited 156 patients from two medical centers. 122 patients from the center A were randomly divided into the training set and the internal test set in a 4:1 ratio. Additionally, 34 patients from the center B served as the external test set. Radiomics features were extracted from multiparametric MRI (MP-MRI), containing axial T2 weighted imaging (T2WI), diffusion weighted imaging (DWI), and dynamic contrast enhancement (DCE) sequences. The three-step method was used for feature extraction: SelecteKBest, least absolute shrinkage and selection operator (LASSO) algorithm, and recursive feature elimination based on random forest (RFE-RF). The model was constructed using six classifiers based on machine learning, and the classifier with the best performance was chosen. Finally, clinical factors associated with EPE were incorporated into the combined model. The classifier with the best performance was XGBoost, which obtained area under curve (AUC) values of 0.853 and 0.848 in the internal and external test sets, respectively. Through SelectKBest, the most relevant clinical factor for EPE was determined to be platelet, which was then added to the combined model, yielding AUC values of 0.880 and 0.848 in the internal and external test sets, respectively. Radiomics models had the potential to noninvasively and accurately predict EPE before surgery. Additionally, it would add value to personalized precision treatment." @default.
- W4306173694 created "2022-10-14" @default.
- W4306173694 creator A5000056230 @default.
- W4306173694 creator A5004106361 @default.
- W4306173694 creator A5006955201 @default.
- W4306173694 creator A5049321721 @default.
- W4306173694 creator A5080221751 @default.
- W4306173694 creator A5084854649 @default.
- W4306173694 creator A5088664989 @default.
- W4306173694 creator A5089640557 @default.
- W4306173694 creator A5091635397 @default.
- W4306173694 date "2023-07-01" @default.
- W4306173694 modified "2023-10-02" @default.
- W4306173694 title "Preoperative Extrapancreatic Extension Prediction in Patients with Pancreatic Cancer Using Multiparameter MRI and Machine Learning-Based Radiomics Model" @default.
- W4306173694 cites W2006165909 @default.
- W4306173694 cites W2007992305 @default.
- W4306173694 cites W2014133561 @default.
- W4306173694 cites W2031677162 @default.
- W4306173694 cites W2121402632 @default.
- W4306173694 cites W2174661749 @default.
- W4306173694 cites W2588892764 @default.
- W4306173694 cites W2609621153 @default.
- W4306173694 cites W2763355946 @default.
- W4306173694 cites W2770438853 @default.
- W4306173694 cites W2807306583 @default.
- W4306173694 cites W2808546184 @default.
- W4306173694 cites W2899440009 @default.
- W4306173694 cites W2901253186 @default.
- W4306173694 cites W2903051249 @default.
- W4306173694 cites W2926366903 @default.
- W4306173694 cites W2981000855 @default.
- W4306173694 cites W3006104185 @default.
- W4306173694 cites W3008296399 @default.
- W4306173694 cites W3017003008 @default.
- W4306173694 cites W3025036301 @default.
- W4306173694 cites W3096322857 @default.
- W4306173694 cites W3102476541 @default.
- W4306173694 cites W3109982372 @default.
- W4306173694 cites W3119713744 @default.
- W4306173694 cites W3135547824 @default.
- W4306173694 cites W3136131120 @default.
- W4306173694 cites W3149606706 @default.
- W4306173694 cites W3153075376 @default.
- W4306173694 cites W3157743102 @default.
- W4306173694 cites W3169989634 @default.
- W4306173694 cites W3175915522 @default.
- W4306173694 cites W3179286153 @default.
- W4306173694 cites W3187428547 @default.
- W4306173694 cites W3189278858 @default.
- W4306173694 cites W3197559541 @default.
- W4306173694 cites W4205965700 @default.
- W4306173694 cites W4206841660 @default.
- W4306173694 cites W4220797967 @default.
- W4306173694 cites W4221133817 @default.
- W4306173694 cites W4235511352 @default.
- W4306173694 doi "https://doi.org/10.1016/j.acra.2022.09.017" @default.
- W4306173694 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36244870" @default.
- W4306173694 hasPublicationYear "2023" @default.
- W4306173694 type Work @default.
- W4306173694 citedByCount "1" @default.
- W4306173694 countsByYear W43061736942023 @default.
- W4306173694 crossrefType "journal-article" @default.
- W4306173694 hasAuthorship W4306173694A5000056230 @default.
- W4306173694 hasAuthorship W4306173694A5004106361 @default.
- W4306173694 hasAuthorship W4306173694A5006955201 @default.
- W4306173694 hasAuthorship W4306173694A5049321721 @default.
- W4306173694 hasAuthorship W4306173694A5080221751 @default.
- W4306173694 hasAuthorship W4306173694A5084854649 @default.
- W4306173694 hasAuthorship W4306173694A5088664989 @default.
- W4306173694 hasAuthorship W4306173694A5089640557 @default.
- W4306173694 hasAuthorship W4306173694A5091635397 @default.
- W4306173694 hasConcept C119857082 @default.
- W4306173694 hasConcept C121608353 @default.
- W4306173694 hasConcept C126322002 @default.
- W4306173694 hasConcept C126838900 @default.
- W4306173694 hasConcept C148483581 @default.
- W4306173694 hasConcept C154945302 @default.
- W4306173694 hasConcept C169258074 @default.
- W4306173694 hasConcept C169903167 @default.
- W4306173694 hasConcept C2778559731 @default.
- W4306173694 hasConcept C2780210213 @default.
- W4306173694 hasConcept C31601959 @default.
- W4306173694 hasConcept C41008148 @default.
- W4306173694 hasConcept C58471807 @default.
- W4306173694 hasConcept C71924100 @default.
- W4306173694 hasConcept C95623464 @default.
- W4306173694 hasConceptScore W4306173694C119857082 @default.
- W4306173694 hasConceptScore W4306173694C121608353 @default.
- W4306173694 hasConceptScore W4306173694C126322002 @default.
- W4306173694 hasConceptScore W4306173694C126838900 @default.
- W4306173694 hasConceptScore W4306173694C148483581 @default.
- W4306173694 hasConceptScore W4306173694C154945302 @default.
- W4306173694 hasConceptScore W4306173694C169258074 @default.
- W4306173694 hasConceptScore W4306173694C169903167 @default.
- W4306173694 hasConceptScore W4306173694C2778559731 @default.
- W4306173694 hasConceptScore W4306173694C2780210213 @default.
- W4306173694 hasConceptScore W4306173694C31601959 @default.
- W4306173694 hasConceptScore W4306173694C41008148 @default.