Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306173840> ?p ?o ?g. }
- W4306173840 endingPage "345" @default.
- W4306173840 startingPage "337" @default.
- W4306173840 abstract "DNA methylation is one of the earliest epigenetic regulation mechanisms studied extensively, and it is critical for normal development, diseases, and gene expression. As a recently identified chemical modification of DNA, N4-acetyldeoxycytosine (4acC) was shown to be abundant in Arabidopsis and highly associated with gene expression and actively transcribed genes. Precise identification of 4acC is essential for studying its biological function. We proposed the 4acCPred, the first computational framework for predicting 4acC-carrying regions from Arabidopsis genomic DNA sequences. Since the existing 4acC data are not precise for a specific base but only report regions that are hundreds of bases long, we formulated the task as a weakly supervised learning problem and built 4acCPred using a multi-instance-based deep neural network. Both cross-validation and independent testing on the four datasets under different conditions show promising performance, with mean areas under the receiver operating characteristic curve (AUCs) of 0.9877 and 0.9899, respectively. 4acCPred also provides motif mining through model interpretation. The motifs found by 4acCPred are consistent with existing knowledge, indicating that the model successfully captured real biological signals. In addition, a user-friendly web server was built to facilitate 4acC prediction, motif visualization, and data access. Our framework and web server should serve as useful tools for 4acC research. DNA methylation is one of the earliest epigenetic regulation mechanisms studied extensively, and it is critical for normal development, diseases, and gene expression. As a recently identified chemical modification of DNA, N4-acetyldeoxycytosine (4acC) was shown to be abundant in Arabidopsis and highly associated with gene expression and actively transcribed genes. Precise identification of 4acC is essential for studying its biological function. We proposed the 4acCPred, the first computational framework for predicting 4acC-carrying regions from Arabidopsis genomic DNA sequences. Since the existing 4acC data are not precise for a specific base but only report regions that are hundreds of bases long, we formulated the task as a weakly supervised learning problem and built 4acCPred using a multi-instance-based deep neural network. Both cross-validation and independent testing on the four datasets under different conditions show promising performance, with mean areas under the receiver operating characteristic curve (AUCs) of 0.9877 and 0.9899, respectively. 4acCPred also provides motif mining through model interpretation. The motifs found by 4acCPred are consistent with existing knowledge, indicating that the model successfully captured real biological signals. In addition, a user-friendly web server was built to facilitate 4acC prediction, motif visualization, and data access. Our framework and web server should serve as useful tools for 4acC research." @default.
- W4306173840 created "2022-10-14" @default.
- W4306173840 creator A5007348590 @default.
- W4306173840 creator A5028329450 @default.
- W4306173840 creator A5062284353 @default.
- W4306173840 creator A5062986831 @default.
- W4306173840 creator A5066912329 @default.
- W4306173840 date "2022-12-01" @default.
- W4306173840 modified "2023-10-14" @default.
- W4306173840 title "4acCPred: Weakly supervised prediction of N4-acetyldeoxycytosine DNA modification from sequences" @default.
- W4306173840 cites W1186776093 @default.
- W4306173840 cites W1496114027 @default.
- W4306173840 cites W1561143138 @default.
- W4306173840 cites W1971057981 @default.
- W4306173840 cites W1974527579 @default.
- W4306173840 cites W1987735941 @default.
- W4306173840 cites W2004336032 @default.
- W4306173840 cites W2009556149 @default.
- W4306173840 cites W2014677321 @default.
- W4306173840 cites W2028071319 @default.
- W4306173840 cites W2037248153 @default.
- W4306173840 cites W2072258885 @default.
- W4306173840 cites W2080324830 @default.
- W4306173840 cites W2101259235 @default.
- W4306173840 cites W2103777723 @default.
- W4306173840 cites W2104367324 @default.
- W4306173840 cites W2123032740 @default.
- W4306173840 cites W2132083557 @default.
- W4306173840 cites W2134877714 @default.
- W4306173840 cites W2171808845 @default.
- W4306173840 cites W2269649163 @default.
- W4306173840 cites W2287984595 @default.
- W4306173840 cites W2345998082 @default.
- W4306173840 cites W2594735672 @default.
- W4306173840 cites W2750798189 @default.
- W4306173840 cites W2808531159 @default.
- W4306173840 cites W2883534252 @default.
- W4306173840 cites W2885815722 @default.
- W4306173840 cites W2891420113 @default.
- W4306173840 cites W2894083868 @default.
- W4306173840 cites W2901932654 @default.
- W4306173840 cites W2912369228 @default.
- W4306173840 cites W2942801317 @default.
- W4306173840 cites W2946682182 @default.
- W4306173840 cites W2946834045 @default.
- W4306173840 cites W2949275670 @default.
- W4306173840 cites W2949348780 @default.
- W4306173840 cites W2965667464 @default.
- W4306173840 cites W2967387109 @default.
- W4306173840 cites W2981572887 @default.
- W4306173840 cites W2988273873 @default.
- W4306173840 cites W2993513714 @default.
- W4306173840 cites W3009776949 @default.
- W4306173840 cites W3035833199 @default.
- W4306173840 cites W3047050823 @default.
- W4306173840 cites W3091252679 @default.
- W4306173840 cites W3133473745 @default.
- W4306173840 cites W3135418749 @default.
- W4306173840 cites W3138476244 @default.
- W4306173840 cites W3164597438 @default.
- W4306173840 cites W3167146668 @default.
- W4306173840 cites W3174855653 @default.
- W4306173840 cites W3181626680 @default.
- W4306173840 cites W3183953034 @default.
- W4306173840 cites W3196991641 @default.
- W4306173840 cites W3217082130 @default.
- W4306173840 cites W4200281017 @default.
- W4306173840 cites W4206065744 @default.
- W4306173840 cites W4224675622 @default.
- W4306173840 doi "https://doi.org/10.1016/j.omtn.2022.10.004" @default.
- W4306173840 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36381577" @default.
- W4306173840 hasPublicationYear "2022" @default.
- W4306173840 type Work @default.
- W4306173840 citedByCount "1" @default.
- W4306173840 countsByYear W43061738402023 @default.
- W4306173840 crossrefType "journal-article" @default.
- W4306173840 hasAuthorship W4306173840A5007348590 @default.
- W4306173840 hasAuthorship W4306173840A5028329450 @default.
- W4306173840 hasAuthorship W4306173840A5062284353 @default.
- W4306173840 hasAuthorship W4306173840A5062986831 @default.
- W4306173840 hasAuthorship W4306173840A5066912329 @default.
- W4306173840 hasBestOaLocation W43061738401 @default.
- W4306173840 hasConcept C104317684 @default.
- W4306173840 hasConcept C110875604 @default.
- W4306173840 hasConcept C11392498 @default.
- W4306173840 hasConcept C119857082 @default.
- W4306173840 hasConcept C136764020 @default.
- W4306173840 hasConcept C143065580 @default.
- W4306173840 hasConcept C150194340 @default.
- W4306173840 hasConcept C154945302 @default.
- W4306173840 hasConcept C190727270 @default.
- W4306173840 hasConcept C2779491563 @default.
- W4306173840 hasConcept C41008148 @default.
- W4306173840 hasConcept C41091548 @default.
- W4306173840 hasConcept C54355233 @default.
- W4306173840 hasConcept C552990157 @default.
- W4306173840 hasConcept C70721500 @default.
- W4306173840 hasConcept C86803240 @default.