Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306173865> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4306173865 endingPage "104255" @default.
- W4306173865 startingPage "104255" @default.
- W4306173865 abstract "Customer complaints reflect the needs of citizens and provide valuable information for the efficient management of urban problems. Indoor water leakage management is required to achieve a sustainable water infrastructure and urban development. In this study, a machine learning (ML)-based modeling framework was developed for predicting the spatial distribution of customer complaints about indoor water leakage in the downtown area of Daegu Metropolitan City, South Korea. Two ML algorithms (XGBoost and LightGBM) were used with six resampling methods (e.g., undersampling, oversampling, and hybrid sampling) to compare the prediction performances. The combination of LightGBM and hybrid sampling showed the highest prediction performance. Post hoc analysis using Shapley Additive Explanations indicated that, among the various input features, the land cover type, building and water infrastructure characteristics were of primary importance. High-resolution gridded mapping clearly revealed the spatial pattern of complaint probabilities. These results provide a decision support tool for indoor water leakage management. The proposed modeling framework encompasses data preprocessing and integration, prediction, interpretation, and spatial mapping, and it is applicable to a wide variety of urban problems that require in-depth analysis of their spatial characteristics." @default.
- W4306173865 created "2022-10-14" @default.
- W4306173865 creator A5013060212 @default.
- W4306173865 creator A5044181073 @default.
- W4306173865 creator A5052400095 @default.
- W4306173865 date "2022-12-01" @default.
- W4306173865 modified "2023-10-02" @default.
- W4306173865 title "Spatial distribution modeling of customer complaints using machine learning for indoor water leakage management" @default.
- W4306173865 cites W1570588870 @default.
- W4306173865 cites W1590872308 @default.
- W4306173865 cites W1678356000 @default.
- W4306173865 cites W1993220166 @default.
- W4306173865 cites W1993665692 @default.
- W4306173865 cites W2045837898 @default.
- W4306173865 cites W2087957785 @default.
- W4306173865 cites W2107686700 @default.
- W4306173865 cites W2135695572 @default.
- W4306173865 cites W2148143831 @default.
- W4306173865 cites W2164330572 @default.
- W4306173865 cites W2285595479 @default.
- W4306173865 cites W2403237691 @default.
- W4306173865 cites W2512230977 @default.
- W4306173865 cites W2562319768 @default.
- W4306173865 cites W2773114383 @default.
- W4306173865 cites W2784992828 @default.
- W4306173865 cites W2804319089 @default.
- W4306173865 cites W2912056372 @default.
- W4306173865 cites W2946874571 @default.
- W4306173865 cites W2963923009 @default.
- W4306173865 cites W2999615587 @default.
- W4306173865 cites W3000025373 @default.
- W4306173865 cites W3032444948 @default.
- W4306173865 cites W3082558305 @default.
- W4306173865 cites W3088516651 @default.
- W4306173865 cites W3090769163 @default.
- W4306173865 cites W3092047133 @default.
- W4306173865 cites W3094226070 @default.
- W4306173865 cites W3106991929 @default.
- W4306173865 cites W3114987615 @default.
- W4306173865 cites W3122678879 @default.
- W4306173865 cites W3152196330 @default.
- W4306173865 cites W3184569281 @default.
- W4306173865 cites W4200081093 @default.
- W4306173865 cites W4200103687 @default.
- W4306173865 cites W4200351456 @default.
- W4306173865 doi "https://doi.org/10.1016/j.scs.2022.104255" @default.
- W4306173865 hasPublicationYear "2022" @default.
- W4306173865 type Work @default.
- W4306173865 citedByCount "1" @default.
- W4306173865 countsByYear W43061738652023 @default.
- W4306173865 crossrefType "journal-article" @default.
- W4306173865 hasAuthorship W4306173865A5013060212 @default.
- W4306173865 hasAuthorship W4306173865A5044181073 @default.
- W4306173865 hasAuthorship W4306173865A5052400095 @default.
- W4306173865 hasConcept C106131492 @default.
- W4306173865 hasConcept C119857082 @default.
- W4306173865 hasConcept C124101348 @default.
- W4306173865 hasConcept C136536468 @default.
- W4306173865 hasConcept C140779682 @default.
- W4306173865 hasConcept C150921843 @default.
- W4306173865 hasConcept C154945302 @default.
- W4306173865 hasConcept C31972630 @default.
- W4306173865 hasConcept C41008148 @default.
- W4306173865 hasConceptScore W4306173865C106131492 @default.
- W4306173865 hasConceptScore W4306173865C119857082 @default.
- W4306173865 hasConceptScore W4306173865C124101348 @default.
- W4306173865 hasConceptScore W4306173865C136536468 @default.
- W4306173865 hasConceptScore W4306173865C140779682 @default.
- W4306173865 hasConceptScore W4306173865C150921843 @default.
- W4306173865 hasConceptScore W4306173865C154945302 @default.
- W4306173865 hasConceptScore W4306173865C31972630 @default.
- W4306173865 hasConceptScore W4306173865C41008148 @default.
- W4306173865 hasFunder F4320322007 @default.
- W4306173865 hasFunder F4320334877 @default.
- W4306173865 hasLocation W43061738651 @default.
- W4306173865 hasOpenAccess W4306173865 @default.
- W4306173865 hasPrimaryLocation W43061738651 @default.
- W4306173865 hasRelatedWork W3021503072 @default.
- W4306173865 hasRelatedWork W3096019139 @default.
- W4306173865 hasRelatedWork W3138490155 @default.
- W4306173865 hasRelatedWork W3176807344 @default.
- W4306173865 hasRelatedWork W4206583062 @default.
- W4306173865 hasRelatedWork W4213170378 @default.
- W4306173865 hasRelatedWork W4225140212 @default.
- W4306173865 hasRelatedWork W4291692947 @default.
- W4306173865 hasRelatedWork W4319983935 @default.
- W4306173865 hasRelatedWork W4382050327 @default.
- W4306173865 hasVolume "87" @default.
- W4306173865 isParatext "false" @default.
- W4306173865 isRetracted "false" @default.
- W4306173865 workType "article" @default.