Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306174581> ?p ?o ?g. }
- W4306174581 abstract "Background: The great majority of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, there is substantial heterogeneity in SARS-CoV-2-specific memory immune responses following infection. There remains a critical need to identify host immune biomarkers predictive of clinical and immunological outcomes in SARS-CoV-2-infected patients. Methods: Leveraging longitudinal samples and data from a clinical trial (N=108) in SARS-CoV-2-infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients. We characterized the association between early immune markers and subsequent disease progression, control of viral shedding, and SARS-CoV-2-specific T cell and antibody responses measured up to 7 months after enrollment. We further compared associations between early immune markers and subsequent T cell and antibody responses following natural infection with those following mRNA vaccination. We developed machine-learning models to predict patient outcomes and validated the predictive model using data from 54 individuals enrolled in an independent clinical trial. Results: We identify early immune signatures, including plasma RIG-I levels, early IFN signaling, and related cytokines (CXCL10, MCP1, MCP-2, and MCP-3) associated with subsequent disease progression, control of viral shedding, and the SARS-CoV-2-specific T cell and antibody response measured up to 7 months after enrollment. We found that several biomarkers for immunological outcomes are shared between individuals receiving BNT162b2 (Pfizer–BioNTech) vaccine and COVID-19 patients. Finally, we demonstrate that machine-learning models using 2–7 plasma protein markers measured early within the course of infection are able to accurately predict disease progression, T cell memory, and the antibody response post-infection in a second, independent dataset. Conclusions: Early immune signatures following infection can accurately predict clinical and immunological outcomes in outpatients with COVID-19 using validated machine-learning models. Funding: Support for the study was provided from National Institute of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID) (U01 AI150741-01S1 and T32-AI052073), the Stanford’s Innovative Medicines Accelerator, National Institutes of Health/National Institute on Drug Abuse (NIH/NIDA) DP1DA046089, and anonymous donors to Stanford University. Peginterferon lambda provided by Eiger BioPharmaceuticals." @default.
- W4306174581 created "2022-10-14" @default.
- W4306174581 creator A5002136363 @default.
- W4306174581 creator A5002509563 @default.
- W4306174581 creator A5017140133 @default.
- W4306174581 creator A5026667682 @default.
- W4306174581 creator A5029682053 @default.
- W4306174581 creator A5031492297 @default.
- W4306174581 creator A5036068985 @default.
- W4306174581 creator A5036212755 @default.
- W4306174581 creator A5037723209 @default.
- W4306174581 creator A5038399044 @default.
- W4306174581 creator A5038753777 @default.
- W4306174581 creator A5046059142 @default.
- W4306174581 creator A5048071455 @default.
- W4306174581 creator A5051019610 @default.
- W4306174581 creator A5051784269 @default.
- W4306174581 creator A5053491673 @default.
- W4306174581 creator A5054207126 @default.
- W4306174581 creator A5056033264 @default.
- W4306174581 creator A5062822575 @default.
- W4306174581 creator A5063699232 @default.
- W4306174581 creator A5065283769 @default.
- W4306174581 creator A5068243893 @default.
- W4306174581 creator A5072986625 @default.
- W4306174581 creator A5076202575 @default.
- W4306174581 creator A5079007877 @default.
- W4306174581 creator A5079595569 @default.
- W4306174581 creator A5085780264 @default.
- W4306174581 date "2022-10-14" @default.
- W4306174581 modified "2023-10-06" @default.
- W4306174581 title "Early immune markers of clinical, virological, and immunological outcomes in patients with COVID-19: a multi-omics study" @default.
- W4306174581 cites W1602238325 @default.
- W4306174581 cites W1744259393 @default.
- W4306174581 cites W1969218538 @default.
- W4306174581 cites W1972524782 @default.
- W4306174581 cites W1997388148 @default.
- W4306174581 cites W2012034410 @default.
- W4306174581 cites W2019412595 @default.
- W4306174581 cites W2032953689 @default.
- W4306174581 cites W2061261440 @default.
- W4306174581 cites W2071831285 @default.
- W4306174581 cites W2110065044 @default.
- W4306174581 cites W2111718223 @default.
- W4306174581 cites W2118128317 @default.
- W4306174581 cites W2301069603 @default.
- W4306174581 cites W2323326409 @default.
- W4306174581 cites W2520597008 @default.
- W4306174581 cites W2593038077 @default.
- W4306174581 cites W2952001873 @default.
- W4306174581 cites W3008028633 @default.
- W4306174581 cites W3016785135 @default.
- W4306174581 cites W3021841162 @default.
- W4306174581 cites W3030537287 @default.
- W4306174581 cites W3034168389 @default.
- W4306174581 cites W3043831218 @default.
- W4306174581 cites W3047402958 @default.
- W4306174581 cites W3047880178 @default.
- W4306174581 cites W3080458234 @default.
- W4306174581 cites W3091039991 @default.
- W4306174581 cites W3099862724 @default.
- W4306174581 cites W3107730772 @default.
- W4306174581 cites W3107765474 @default.
- W4306174581 cites W3111106539 @default.
- W4306174581 cites W3112105690 @default.
- W4306174581 cites W3121008609 @default.
- W4306174581 cites W3126460810 @default.
- W4306174581 cites W3127381644 @default.
- W4306174581 cites W3129580280 @default.
- W4306174581 cites W3131938123 @default.
- W4306174581 cites W3134099704 @default.
- W4306174581 cites W3136488945 @default.
- W4306174581 cites W3138469897 @default.
- W4306174581 cites W3142505488 @default.
- W4306174581 cites W3153732845 @default.
- W4306174581 cites W3160235188 @default.
- W4306174581 cites W3165146463 @default.
- W4306174581 cites W3165446091 @default.
- W4306174581 cites W3165605711 @default.
- W4306174581 cites W3173003579 @default.
- W4306174581 cites W3182898074 @default.
- W4306174581 cites W4205967605 @default.
- W4306174581 cites W4225379921 @default.
- W4306174581 cites W4226074581 @default.
- W4306174581 cites W4226376477 @default.
- W4306174581 doi "https://doi.org/10.7554/elife.77943" @default.
- W4306174581 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36239699" @default.
- W4306174581 hasPublicationYear "2022" @default.
- W4306174581 type Work @default.
- W4306174581 citedByCount "5" @default.
- W4306174581 countsByYear W43061745812022 @default.
- W4306174581 countsByYear W43061745812023 @default.
- W4306174581 crossrefType "journal-article" @default.
- W4306174581 hasAuthorship W4306174581A5002136363 @default.
- W4306174581 hasAuthorship W4306174581A5002509563 @default.
- W4306174581 hasAuthorship W4306174581A5017140133 @default.
- W4306174581 hasAuthorship W4306174581A5026667682 @default.
- W4306174581 hasAuthorship W4306174581A5029682053 @default.
- W4306174581 hasAuthorship W4306174581A5031492297 @default.
- W4306174581 hasAuthorship W4306174581A5036068985 @default.