Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306174625> ?p ?o ?g. }
- W4306174625 endingPage "31" @default.
- W4306174625 startingPage "1" @default.
- W4306174625 abstract "Approximate Computing Techniques (ACTs) take advantage of resilience computing applications to trade off among output precision, area, power, and performance. ACTs can lead to significant gains at affordable costs when efficiently implemented on Field Programmable Gate Array– (FPGA) based accelerators. Although several novel ACTs works have been proposed for FPGA accelerators, their applicability to high-assurance systems has not been explored as much. ACTs are becoming necessary in many critical Edge computing systems, such as self-driving cars and Earth observation satellites, to increase computational efficiency. However, an important question comes to mind when targeting critical systems: Does ACT optimization negatively affect the reliability of the system and how can one find optimal design architectures that blend classic mitigation techniques like Triple Modular Redundancy with approximation- and precise-based arithmetic hardware units to achieve the best possible computational efficiency without compromising dependability? This work aims to solve this research problem by introducing a Design Space Exploration (DSE) methodology that employs ACTs in arithmetic units of the design and identifies Pareto-optimal microarchitectures that balance all relevant gains of ACTs, such as area, speed, power, failure rate, and precision, by inserting the correct amount of approximation in the design. In a nutshell, our DSE methodology has formulated the DSE with a Multi-Objective Optimization Problem (MOP). Each Pareto-optimal solution of our tool finds which arithmetic units of the design to implement with precise and approximate circuits and which units to selectively triplicate to remove single points of failure that compromise system reliability below acceptable thresholds. We also suggest another formulation of the DSE into a Single-Objective constraint Optimization Problem (ScOP) producing a single optimal point, and that the user may demand, as a less time-consuming alternative to the MOP if a complete Pareto-front is not needed. Our methodology generates fault-tolerant versions of the Pareto-optimal approximate designs (or simple optimized approximate designs if the ScOP choice is picked) by selectively applying mitigation techniques in a way that the overheads of redundant resources for fault-tolerance do not negate the gains of approximation in comparison to the fault-tolerant versions of the precise design. We evaluate our method on two FPGA-based accelerators: a JPEG encoder and an H.264/Advanced Video Coding decoder. Our experimental results show significant gains in area, frequency, and power consumption without compromising output quality and system reliability compared to classic solutions that replicate all or a part of the resources of the precise design to increase dependability metrics." @default.
- W4306174625 created "2022-10-14" @default.
- W4306174625 creator A5010662488 @default.
- W4306174625 creator A5032789590 @default.
- W4306174625 creator A5048851539 @default.
- W4306174625 date "2023-07-24" @default.
- W4306174625 modified "2023-09-30" @default.
- W4306174625 title "A Methodology for Fault-tolerant Pareto-optimal Approximate Designs of FPGA-based Accelerators" @default.
- W4306174625 cites W2061205755 @default.
- W4306174625 cites W2265166184 @default.
- W4306174625 cites W2409569083 @default.
- W4306174625 cites W2738060292 @default.
- W4306174625 cites W2799036754 @default.
- W4306174625 cites W2824505125 @default.
- W4306174625 cites W2895540242 @default.
- W4306174625 cites W2896491213 @default.
- W4306174625 cites W2940903362 @default.
- W4306174625 cites W2955439067 @default.
- W4306174625 cites W2963082845 @default.
- W4306174625 cites W2976168550 @default.
- W4306174625 cites W2992721891 @default.
- W4306174625 cites W3013677344 @default.
- W4306174625 cites W3015189862 @default.
- W4306174625 cites W3033191457 @default.
- W4306174625 cites W3039722244 @default.
- W4306174625 cites W3089971831 @default.
- W4306174625 cites W3092362650 @default.
- W4306174625 cites W3092531706 @default.
- W4306174625 cites W3108764696 @default.
- W4306174625 cites W3113229535 @default.
- W4306174625 cites W3163327350 @default.
- W4306174625 cites W3176896304 @default.
- W4306174625 cites W3190210848 @default.
- W4306174625 cites W4200569732 @default.
- W4306174625 cites W4210659427 @default.
- W4306174625 cites W4241937418 @default.
- W4306174625 doi "https://doi.org/10.1145/3568021" @default.
- W4306174625 hasPublicationYear "2023" @default.
- W4306174625 type Work @default.
- W4306174625 citedByCount "0" @default.
- W4306174625 crossrefType "journal-article" @default.
- W4306174625 hasAuthorship W4306174625A5010662488 @default.
- W4306174625 hasAuthorship W4306174625A5032789590 @default.
- W4306174625 hasAuthorship W4306174625A5048851539 @default.
- W4306174625 hasBestOaLocation W43061746251 @default.
- W4306174625 hasConcept C101468663 @default.
- W4306174625 hasConcept C111919701 @default.
- W4306174625 hasConcept C113775141 @default.
- W4306174625 hasConcept C115903868 @default.
- W4306174625 hasConcept C120314980 @default.
- W4306174625 hasConcept C121332964 @default.
- W4306174625 hasConcept C126255220 @default.
- W4306174625 hasConcept C127413603 @default.
- W4306174625 hasConcept C137635306 @default.
- W4306174625 hasConcept C149635348 @default.
- W4306174625 hasConcept C152124472 @default.
- W4306174625 hasConcept C163258240 @default.
- W4306174625 hasConcept C196371267 @default.
- W4306174625 hasConcept C200601418 @default.
- W4306174625 hasConcept C2776221188 @default.
- W4306174625 hasConcept C33923547 @default.
- W4306174625 hasConcept C41008148 @default.
- W4306174625 hasConcept C42935608 @default.
- W4306174625 hasConcept C43214815 @default.
- W4306174625 hasConcept C62520636 @default.
- W4306174625 hasConcept C63540848 @default.
- W4306174625 hasConcept C77019957 @default.
- W4306174625 hasConceptScore W4306174625C101468663 @default.
- W4306174625 hasConceptScore W4306174625C111919701 @default.
- W4306174625 hasConceptScore W4306174625C113775141 @default.
- W4306174625 hasConceptScore W4306174625C115903868 @default.
- W4306174625 hasConceptScore W4306174625C120314980 @default.
- W4306174625 hasConceptScore W4306174625C121332964 @default.
- W4306174625 hasConceptScore W4306174625C126255220 @default.
- W4306174625 hasConceptScore W4306174625C127413603 @default.
- W4306174625 hasConceptScore W4306174625C137635306 @default.
- W4306174625 hasConceptScore W4306174625C149635348 @default.
- W4306174625 hasConceptScore W4306174625C152124472 @default.
- W4306174625 hasConceptScore W4306174625C163258240 @default.
- W4306174625 hasConceptScore W4306174625C196371267 @default.
- W4306174625 hasConceptScore W4306174625C200601418 @default.
- W4306174625 hasConceptScore W4306174625C2776221188 @default.
- W4306174625 hasConceptScore W4306174625C33923547 @default.
- W4306174625 hasConceptScore W4306174625C41008148 @default.
- W4306174625 hasConceptScore W4306174625C42935608 @default.
- W4306174625 hasConceptScore W4306174625C43214815 @default.
- W4306174625 hasConceptScore W4306174625C62520636 @default.
- W4306174625 hasConceptScore W4306174625C63540848 @default.
- W4306174625 hasConceptScore W4306174625C77019957 @default.
- W4306174625 hasFunder F4320327859 @default.
- W4306174625 hasIssue "4" @default.
- W4306174625 hasLocation W43061746251 @default.
- W4306174625 hasOpenAccess W4306174625 @default.
- W4306174625 hasPrimaryLocation W43061746251 @default.
- W4306174625 hasRelatedWork W175038994 @default.
- W4306174625 hasRelatedWork W2019331916 @default.
- W4306174625 hasRelatedWork W2151961246 @default.
- W4306174625 hasRelatedWork W2176099869 @default.