Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306174955> ?p ?o ?g. }
- W4306174955 endingPage "100128" @default.
- W4306174955 startingPage "100128" @default.
- W4306174955 abstract "Site-specific weed detection and management is a crucial approach for crop production management and herbicide contamination mitigation in precision agriculture. With the advent of unmanned aerial vehicles (UAVs) and advances in deep learning techniques, it has become possible to identify and classify weeds from crops at desired spatial and temporal resolution. In this research, a faster region based convolutional neural network was implemented for the automatic weed identification and classification using a mixed crop farmland as a case study. A DJI phantom 4 UAV was used to simultaneously collect about 254 image pairs of the study site. The images were annotated before transferring them into google colaboratory where they were trained over five epochs; 10,000, 20,000, 100,000, 200,000, and 242,000 with the aim of detecting the point when the model flattens out in the process of automatically identifying and classifying the weeds. The neural network identified and classified five classes which are; sugarcane, spinach, banana, pepper, and weeds. Finally, the accuracy of the automatic weed classification was evaluated with the aid of the recorded loss function and confusion matrix, and the result shows that the implemented model gave a classification accuracy of 52.5%, weed precision of 50%, weed recall of 7.7% and F1 score of 71.6% at 10,000 epochs, classification accuracy of 67.8%, weed precision of 67%, weed recall of 52.4% and a F1 score of 85.9% at 20,000 epochs, classification accuracy of 97.2%, weed precision of 96.2%, weed recall of 97.5% and a F1 score of 99% at 100,000 epochs, classification accuracy of 98.3%, weed precision of 98.1%, weed recall of 99.1% and a F1 score of 99.4% at 200,000 epochs, and classification accuracy of 97%, weed precision of 95%, weed recall of 99% and a F1 score of 99% at 242,000 epochs. It was observed that the model's performance improves significantly with increase in the number of epochs but got saturated at 242,000 epochs. The findings showed that the faster RCNN is robust for automatic weed identification and classification in a mixed crop farm." @default.
- W4306174955 created "2022-10-14" @default.
- W4306174955 creator A5050391751 @default.
- W4306174955 creator A5087894366 @default.
- W4306174955 date "2023-02-01" @default.
- W4306174955 modified "2023-09-30" @default.
- W4306174955 title "Effect of varying training epochs of a Faster Region-Based Convolutional Neural Network on the Accuracy of an Automatic Weed Classification Scheme" @default.
- W4306174955 cites W1863411004 @default.
- W4306174955 cites W1968314959 @default.
- W4306174955 cites W1997772817 @default.
- W4306174955 cites W1998685830 @default.
- W4306174955 cites W1998943389 @default.
- W4306174955 cites W2011270889 @default.
- W4306174955 cites W2038782607 @default.
- W4306174955 cites W2061620776 @default.
- W4306174955 cites W2069209512 @default.
- W4306174955 cites W2071423370 @default.
- W4306174955 cites W2074464158 @default.
- W4306174955 cites W2243003515 @default.
- W4306174955 cites W2322112093 @default.
- W4306174955 cites W2524954406 @default.
- W4306174955 cites W2547246443 @default.
- W4306174955 cites W2767767563 @default.
- W4306174955 cites W2771088516 @default.
- W4306174955 cites W2773138591 @default.
- W4306174955 cites W2790979755 @default.
- W4306174955 cites W2799973659 @default.
- W4306174955 cites W2803867573 @default.
- W4306174955 cites W2805142011 @default.
- W4306174955 cites W2884367402 @default.
- W4306174955 cites W2885770726 @default.
- W4306174955 cites W2890319410 @default.
- W4306174955 cites W2913227116 @default.
- W4306174955 cites W2971480543 @default.
- W4306174955 cites W2991423016 @default.
- W4306174955 cites W2999000640 @default.
- W4306174955 cites W3005383134 @default.
- W4306174955 cites W3013143790 @default.
- W4306174955 cites W3014601011 @default.
- W4306174955 cites W3039926407 @default.
- W4306174955 cites W3120697286 @default.
- W4306174955 cites W3121430273 @default.
- W4306174955 cites W3134154885 @default.
- W4306174955 cites W3136950817 @default.
- W4306174955 cites W3148181069 @default.
- W4306174955 cites W3177435843 @default.
- W4306174955 cites W3197183887 @default.
- W4306174955 cites W4205616618 @default.
- W4306174955 cites W4294868061 @default.
- W4306174955 doi "https://doi.org/10.1016/j.atech.2022.100128" @default.
- W4306174955 hasPublicationYear "2023" @default.
- W4306174955 type Work @default.
- W4306174955 citedByCount "2" @default.
- W4306174955 countsByYear W43061749552023 @default.
- W4306174955 crossrefType "journal-article" @default.
- W4306174955 hasAuthorship W4306174955A5050391751 @default.
- W4306174955 hasAuthorship W4306174955A5087894366 @default.
- W4306174955 hasBestOaLocation W43061749551 @default.
- W4306174955 hasConcept C118518473 @default.
- W4306174955 hasConcept C120217122 @default.
- W4306174955 hasConcept C138602881 @default.
- W4306174955 hasConcept C147273371 @default.
- W4306174955 hasConcept C148524875 @default.
- W4306174955 hasConcept C153180895 @default.
- W4306174955 hasConcept C154945302 @default.
- W4306174955 hasConcept C18903297 @default.
- W4306174955 hasConcept C2775891814 @default.
- W4306174955 hasConcept C41008148 @default.
- W4306174955 hasConcept C50644808 @default.
- W4306174955 hasConcept C6557445 @default.
- W4306174955 hasConcept C81363708 @default.
- W4306174955 hasConcept C81669768 @default.
- W4306174955 hasConcept C86803240 @default.
- W4306174955 hasConceptScore W4306174955C118518473 @default.
- W4306174955 hasConceptScore W4306174955C120217122 @default.
- W4306174955 hasConceptScore W4306174955C138602881 @default.
- W4306174955 hasConceptScore W4306174955C147273371 @default.
- W4306174955 hasConceptScore W4306174955C148524875 @default.
- W4306174955 hasConceptScore W4306174955C153180895 @default.
- W4306174955 hasConceptScore W4306174955C154945302 @default.
- W4306174955 hasConceptScore W4306174955C18903297 @default.
- W4306174955 hasConceptScore W4306174955C2775891814 @default.
- W4306174955 hasConceptScore W4306174955C41008148 @default.
- W4306174955 hasConceptScore W4306174955C50644808 @default.
- W4306174955 hasConceptScore W4306174955C6557445 @default.
- W4306174955 hasConceptScore W4306174955C81363708 @default.
- W4306174955 hasConceptScore W4306174955C81669768 @default.
- W4306174955 hasConceptScore W4306174955C86803240 @default.
- W4306174955 hasLocation W43061749551 @default.
- W4306174955 hasLocation W43061749552 @default.
- W4306174955 hasOpenAccess W4306174955 @default.
- W4306174955 hasPrimaryLocation W43061749551 @default.
- W4306174955 hasRelatedWork W1863411004 @default.
- W4306174955 hasRelatedWork W2073543998 @default.
- W4306174955 hasRelatedWork W2169051763 @default.
- W4306174955 hasRelatedWork W2767651786 @default.
- W4306174955 hasRelatedWork W2912288872 @default.
- W4306174955 hasRelatedWork W2940499938 @default.